The Climate chamber system is an essential facility for aerodynamic performance development of commercial vehicles to investigate air flow field characteristics in different climatic conditions. In particular, the analysis of airflow fields within the chamber system is an essential consideration for optimal design. In this study, the pressure characteristics and velocity uniformity in the test section area were predicted with blower impeller rotational speed using CFD. The velocity uniformity is affected by the distance from the blower nozzle outlet, reaching up to 72.7% at 695 RPM. The pressure differential between 300 RPM and 740 RPM shows an approximate difference of 2651 Pa, with a high-pressure distribution observed along the right side wall of the blower. These results are expected to be used as design data applicable for improving the performance of environmental chamber systems.
There are many types of foam molding methods. The most commonly used methods are the pressure foaming method, in which foam resin is mixed with a foaming agent at high temperature and high pressure, and the normal pressure foaming method, which foams at high temperature without pressure. The polymer resins used for foaming have different viscosities. For foaming under normal pressure, they need to be designed and analyzed for optimal foaming conditions, to obtain resins with low melt-viscosity or a narrow optimal viscosity range. This study investigated how changes in viscosity, molding temperature, and cross-link foaming conditions affected the characteristics of the molded foam, prepared by blending rubber polymer with biodegradable resin. The morphologies of cross sections and the cell structures of the normal pressure foam were investigated by SEM analysis. Properties were also studied according to cross-link/foaming conditions and torque. Also, the correlation between foaming characteristics was studied by analyzing tensile strength and elongation, which are mechanical properties of foaming composites.
The change in the performance of the range hood according to the pressure change was investigated through a comparative experiment, and the conclusion is as follows. KS C 9304: In 2020, static pressure was applied at 100 Pa according to the fan standard, and the test was conducted by varying the outlet diameter and power consumption. In the case of Motor power 55W, the air volume value was 184.6 when the outlet diameter was 125mm. As a result of the test, if the power consumption is 52.0W, the diameter of the outlet is 125mm, and the power consumption is 60.8W, and the diameter of the outlet is 100mm, it meets 160 or more and less than 200 (constant pressure 100Pa).
Backfill is one of the key elements of deep geological disposal. The backfill material is used to fill disposal tunnels and is mainly composed of swellable clay, preventing the migration of nuclide and structurally supporting the tunnel. The selection and application of backfill material are critical for the stable and efficient disposal of spent fuel. Therefore, it is essential to secure various candidate materials for backfill and to comprehensively understand the properties and behavior of these materials. Recently, the Korea Atomic Energy Research Institute has selected a candidate material called Bentonil-WRK and is evaluating its applicability. To utilize this material as backfill, the safety function of a mixed backfill concept, consisting of sand and Bentonil-WRK, was assessed. The swelling pressure was measured as a function of dry density for a bentonite/silica sand mix ratio of 3/7. The results showed that the swelling pressure ranged from 0.15 to 0.273 MPa, depending on the dry density, with higher dry densities resulting in higher swelling pressures. The measured swelling pressure met the target performance criteria suggested by SKB and Posiva (i. e., 0.1 MPa), but did not meet the design requirement for swelling pressure (i. e., 1 MPa). This indicate the need for further research after increasing the mass fraction of bentonite (e. g., mix ratio 4/6 or more). The results of this study are expected to be used in the selection of candidate backfill materials and the establishment of design guidelines for engineered barrier backfill.
국내에서는 ‘태양광 발전 사업‘을 지원하여 태양광 발전소를 늘려나가고 있다. 태양광 발전기는 옥외에 있어 바람에 직접적 으로 노출되어있기 때문에 태풍과 같은 강풍에 큰 영향을 받게 된다. 최근 태풍의 강도와 빈도가 증가하면서 이에 따른 피해가 증가하 고 있다. 태양광 발전기는 유지 관리 및 보수 작업의 용이성 때문에 동서방향으로 배치한 태양광 어레이들 좌우 사이에 이격거리를 두 고 설치된다. 따라서 본 연구에서는 동서방향 이격거리를 변수로 특정하여 태양광 어레이에 작용하는 풍압분포와 피크순압력계수를 산출하였다. 이를 위해 이격거리를 0.3m, 0.5m, 1.0m로 선정하여 풍압실험을 진행하였다. 모든 변수에서 어레이의 양측 상부 모서리에 서는 상방향, 하부 모서리에서는 하방향의 피크순압력계수가 지배적이었다. 어레이 내단부에서는 상방향과 하방향의 피크순압력계수 가 이격거리 0.3m일 때 가장 크게 나왔으나, 외단부보다 전체적으로는 값이 작았다. 어레이 좌우 이격거리에 대한 내단부에서의 수속 효과보다 외단부에서 생긴 와로 인한 피크순압력계수가 크게 나타났기 때문에 외단부에 대한 안전성을 더 고려해야 할 것으로 판단된다.
In this study, the effects of fuel injection pressure changed from 45 to 65 MPa on combustion and emission characteristics were investigated in a common rail direct injection (CRDI) diesel engine fueled with diesel and palm oil biodiesel blends. The engine speed and engine load were controlled at constant 1700rpm and 100Nm, respectively. The tested fuel were PBD20 (20 vol.% palm oil biodiesel blended with 80 vol.% diesel fuel). The main and pilot injection timing was fixed at 3.5°CA BTDC and 27°CA BTDC (before top dead center), respectively. The experimental results show that the combustion pressure and heat release rate increased. In addition, the indicated mean effective pressure (IMEP) and maximum combustion pressure increased with an increase of the fuel injection pressure. Hydrocarbon (HC), smoke opacity and carbon monoxide (CO) decreased, but oxides of nitrogen (NOx) emissions increased as fuel injection pressure increased.
화석연료의 사용은 대기가 오염되어 지구온난화와 이상기후 등의 문제를 야기하고 있다. 우리나라는 탄소 배출량을 줄이기 위하여 신재생에너지 개발에 관심이 집중되었고, 신재생에너지에 관한 정책 중 ‘그린 홈 100만호 보급사업’을 통해 일반 주택에 태양 광 발전기 보급이 확대되었다. 태양광 발전기는 외부에 노출되어 있어 직접적으로 태풍과 같은 강풍에 영향을 받게 된다. 따라서 보급 이 확대된 만큼 피해사례도 증가하고 있다. 본 연구에서는 태양광 발전기의 안전한 내풍설계를 위하여 주택설치 용량에 부합하는 태양광 발전기 형태를 특정하여 풍동실험을 진행하였다. 태양광 발전기의 모듈을 동일 면적의 정사각형(3 by 5 어레이), 직사각형(5 by 3 어레이)으로 배열하고 설치 각도를 30°, 35°, 40°로 하여 변수에 따른 풍압분포와 피크순압력계수를 산출하였다. 전체적으로 설치 각도가 증가할수록 값은 줄어들었으며 어레이 상부 모서리에서 상방향, 하부 모서리에서 하방향의 피크순압력계수가 지배적이었다. 또한 대체로 정사각형(3 by 5 어레이)보다 직사각형(5 by 3 어레이)의 배열이 바람에 더 불리한 것으로 나타났다.
In this study the characteristics of wind pressure that are depending on the open type of retractable dome roof were analyzed according to the wind pressure coefficient and wind pressure spectrum. The analysis results showed that the open type and shape of the roof both had a significant impact on the wind pressure changing. In case of the edge to center open type, the wind pressure has not changed much because of the complex turbulence of flow and open area. On the other hand, in case of the center to edge open type, it has confirmed that wind pressure increases due to the separation of flow in windward and open area.
In order to satisfy the strengthening automobile exhaust gas regulation and CO2 regulation, the development of eco-friendly vehicles is actively progressing. To cope with these regulations, research on alternative fuel vehicles is being actively conducted. Alternative fuels are one of the best ways to reduce dependence on fossil fuels and respond to emissions and CO2 regulations. Natural gas, one of many alternative fuels, contains methane (CH4) as a main component and has abundant reserves, so it is attracting attention as a fuel that can provide stable long-term supply by replacing fossil fuels. In addition, natural gas has a high octane number, so there is room for improvement in combustion characteristics when used in SI engines, and it has the advantage of reducing harmful emissions and carbon dioxide (CO2) compared to conventional fossil fuels. When using a low-pressure injector in a turbo engine, it is difficult to secure the flow rate of fuel because the pressure difference between the injector and the manifold is small. Therefore, it is necessary to develop a high-pressure injector to improve this. Natural gas is a gaseous fuel and should be developed in consideration of compressible flow, Although the use of a CNG high-pressure injector is required, it is difficult to stabilize the flow due to the Mach disk and shock wave interference caused by compressible flow. If the flow is not stabilized, it is difficult to precisely control the flow. Therefore, it is necessary to develop an injector in consideration of flow characteristics. In this paper, the flow analysis according to the shape change of the injector was conducted to improve the fuel flow rate injected from the 800 kPa high pressure CNG injector.
In this study, the flat glass and adsorption pad were modeled using SolidWorks Simulation, to understand the deformation characteristics of the vertical flat glass by the adsorption pressure during vertical transport of LCD. The horizontal and vertical displacements and equivalent stresses of the flat glass were investigated by the structural analysis. From the displacement and stress visualization according to the adsorption pressure, the higher the adsorption pressure, the larger the glass surface protruded. The horizontal deformation of flat glass increased with increasing thickness and the vertical deformation increased with decreasing thickness. In addition, the maximum equivalent stress applied to the flat glass increased significantly as the adsorption pressure increased and the thickness decreased. As a result of the structural analysis, the thinner the thickness of the plate glass, the greater the effect on the adsorption pressure. Especially, the effect of the adsorption pressure was clearly observed at the thickness of 0.5mm.
하이브리드 감압 열펌프 건조기의 효과를 파악하기 위하여 건조된 굴 제품을 8주간 저장하면서 일반 성분의 변화와 글리코겐 함량의 변화 등을 조사하였다. 일반세균의 변화는 18~19×103 CFU/g으로 기존제품의 27~30×103 CFU/g 보다 안전하였다. 주요 지방산의 함유량은 건조기에서 건조한 시료의 DHA 및 EPA 함량은 L1-1, L1-3 및 R2-2에서 각각 17.87% 및 14.80%, 17.46% 및 14.38%, 17.89% 및 14.99%이었고, 반면 CD-1은 각각 15.41% 및 13.20%로 약간의 차이를 보였다. 각 시료의 유리아미노산 함량에는 큰 차이를 보이지 않아 1325.2~1360.4 mg/100 g으로 나타났다. 그리고 선도를 나타내는 K 값에서는 하이브리드 건조기에서 건조한 시료가 저장기간 동안 매우 우수한 신선도를 나타낸 반면, 시판 굴의 시료에서는 34.0~42.1%로 나타났다.
Heat transfer and pressure drop of horizontal heat exchangers with different configurations and installations numerically characterized. Three different heat exchangers were used and shaped as linear, wavy, and horizontal slinky, respectively. Installation depth was set from 0.5m to 3.0m and pipe spacing was ranged from 0.3m to 2.1m. The results showed that heat transfer rate and pressure drop were increased with the increase in the installation depth and the pipe spacing. The horizontal slinky heat exchanger carried more heat compared to others due to the greater effective heat transfer surface area per installation area. In terms of a ratio of heat transfer rate to pressure drop indicating the system efficiency, the linear heat exchanger performed better than others. On the other hand, the horizontal slinky heat exchanger was the most effective with respect to a ratio of heat transfer rate to installation cost.
When a train enters a tunnel, a pressure wave is generated. This pressure wave propagates in the tunnel and emits as micro pressure wave at the opposite tunnel exit. This pressure wave could appear as a sound pulse in a particular environment and cause hazardous effects on the environment near the tunnel exit. When planning tunnels, it is necessary to take appropriate measures to reduce the magnitude of the micro pressure wave. In this study, we investigated the existing micro pressure wave management standards and studied the signal processing method and the sound evaluation method which were used in setting the appropriate management standard for the evaluation of the micro pressure wave.
To understand the effect of high pressure on nitrogen oxides (NOx) formation in water added methane flames, opposed nonpremixed Water-methane/air (H2O-CH4/air) flames are numerically studied with high initial pressure. With GRI 3.0 detailed kinetic mechanism, NOx emissions are predicted for various strain rates. Due to high pressure, the chemical species are distributed in a narrow region, which means the thickness of the flame is thin. This can be clearly seen with high strain rate. Elevated pressure increases maximum temperature of flames which results in increased NOx emission. Even with elevated initial pressure, NOx emissions for H2O added methane flames are significantly decreased compare to pure methane flame. In addition, increased strain rate is also significant factor for decreasing NOx emission. With detailed rate of production analysis, in case of high pressure, it is confirmed that NO2 pathway is the most dominant reaction pathway than any other pathways.
화석연료로부터 기인한 환경오염에 대한 대응과 더불어 신재생에너지 공급의무화제도의 시행은 재생연료유 등 신재생에너지의 활용도를 증대시켰다. 부생연료유(2호)와 정제연료유(감압)는 국내 법령으로 엄격히 규제되고 있으며, 부생연료유(2호)를 혼합한 정제연료유(감압)의 물성변화를 시험하였다. 부생연료유(2호)를 1 : 1로 혼합한 정제연료유(감압)의 물성분석 결과, 국내 폐기물관리법에서 규정하고 있는 품질기준을 만족하였다. 다만, 연료와 관련한 추가항목 시험결과에서 높은 방향족 함량을 나타내었다. 연료내 높은 방향족 함량은 사용기기의 고무류 파손이나 연소 시 그을음, 매연 등이 발생할 가능성이 높을 것으로 보인다.
The 3-way valve have been used as a valve for opening and closing the valve by the flow control in the pressure system of the cryogenic and high pressure environment. In this paper, numerical analysis and experimental study on fracture nipple of 3-way ultra high pressure valve applied to space launch vehicle was carried out. We have developed a 3-way valve numerical simulation modeler of cryogenic environment using commercial software ANSYS 18.2. As results of numerical analysis, optimum nipple condition was derived. In addition, a 3-way valve prototype was fabricated and the fracture test was performed and compared with the numerical analysis results.