본 연구에서는 ALOHA와 Bow-tie를 활용하여 메탄올 추진 선박의 저장 탱크가 울산항에서의 누출 시나리오를 가정하여 위험도 평가하였다. ALOHA를 이용하여 대안 및 최악의 시나리오를 산정하여 피해 범위를 예측하였다. 독성 영향 범위의 결과(ERPG-2 기준)로는 대안(629m), 최악(817m)로 육상 탱크 터미널의 부두 시설 및 거주 지역까지 포함되는 것으로 확인되었다. 인화성 영향 범위(LEL 10% 기준) 는 대안(126m), 최악(218m) 선박에서만 발생하였으며, 열복사 영향 범위(5.0kW/m2 기준)는 대안(56m), 최악(56m)로 선박에서만 영향을 미쳤 다. 또한, 전문가 집단을 구성하여 Bow-tie 기법을 통하여 예방 대책과 완화 대책을 평가하였다. 대책 유형 분류에서는 Hardware와 Human 으로 구분되었으며, 안전 유효성과 위험 심각성의 결과에서는 “Gas Freeing System”, “Ventilation System”, “Fire-Fighting System이 가장 높은 평가를 받았다. 위의 평가를 토대로 위험도 평가를 도식화하였다.
South It is necessary to develop the future technologies to improve the sustainability and acceptability of nuclear power plants generation. Currently, our company is preparing to build the dry storage facility on-site in accordance with the basic plan for managing high-level radioactive waste announced by the government in 2021. However, studies on technologies for the volume reduction of spent nuclear fuel to increase the efficiency of on-site spent fuel dry storage facilities are very not enough. Accordingly, in this study, the storage efficiency and appropriateness for the SF volume reduction processing technologies such as SF oxide processing technology and consolidation technology are evaluated. Finally, the goal is to develop the optimized technologies to improve the storage efficiency of spent nuclear fuel. As a result in this study is followings. [Safety] After removing volatile fission products (Xe, Kr, I, etc.), Xe, Kr, etc. are removed during storage of the sintered structures. UO2 has a high melting point of approximately 1,000°C after cesium (Cs) has been removed, and heat can be removed by natural convection. [Economy]1999 DUPIC unit facility unit price reference, 2020 standard 328 $/kg estimated. A Comprehensive Approach Considering the Whole System is needed. Benefit from replacement and continuous operation of metal storage containers. Changes in economic efficiency obtained in conjunction with fluctuations in electricity prices and disposal. [Waste filter] A separated solidification facility high-level waste filter is required, and overseas outsourcing must be considered. [Waste cladding]. Cannot be accommodated in low-level disposal site. This reason is why the Ni nuclides occur to be in bulk. [Metal structural material] It is possible to reduce the initial volume by 7.6% or more when compressed or melted, but the technology needs to be advanced. [Oxide blocks] Larger size and density are expected to improve storage and disposal efficiency. [Facilities operation waste] Expected to be able to be disposed of at mid-to-low level decommissioning sites in Gyeongju city. [Solidified volatile nuclides and activated metals] Expected to improve storage efficiency when used volume is reduced and stored, such as outsourced reprocessing. [Oxide block] Radioactivity and decay heat are estimated to be reduced by half during oxide treatment. 75% reduction in volume and 40% reduction in storage area compared to used nuclear fuel before treatment. [Merits/Shortages] Improvement of storage and disposal efficiency empirical research such as large-capacity [real-scale] oxide block production is required. Oxide processing facilities are likely to be classified as post-use nuclear fuel processing facilities. It is determined that additional documents such as a Radiation Environmental Report (RER) must be submitted. Existence of possible external leaks of glass, highly mobile radionuclides from the point of view of nuclear criticality and heat removal. Acceptancy requirements of citizens in the process of creating additional sites for oxide treatment facilities. Considering social public opinion, it is necessary to secure the acceptability such as residents’ opinions convergence. Characteristics of high nuclear non-propagation compared to other processing technologies involving chemical processing. Also, Expectation of volume reduction effect for spent nuclear fuel itself. Volume reduction methods for solid waste and gaseous waste are required.
In order to respond to environmental pollution, developed countries, including Korea, have begun to conduct research to utilize hydrogen energy. For mass transfer of hydrogen energy, storage as liquid hydrogen is advantageous, and in this case, the volume can be reduced to 1/800. As such, the transportation technology of liquefied hydrogen for ships is expected to be needed in the near future, but there is no commercialized method yet. This study is a study on the technology to test the performance of the components constituting the membrane type storage container in a cryogenic environment as a preparation for the above. It is a study to find a way to respond by analyzing in advance the problems that may occur during the shear test of adhesives. Through this study, the limitations of ISO4587 were analyzed, and in order to cope with this, the specimen was supplemented so that fracture occurred in the adhesive, not the adhesive gripper, by using stainless steel, a low-temperature steel, to reinforce the thickness. Based on this, shear evaluation was performed under conditions lowered to minus 243℃, and it was confirmed that the breaking strength was higher at cryogenic temperatures.
Most of the spent nuclear fuel generated by domestic nuclear power plants (NPPs) is temporarily stored in wet storage which is spent fuel pool (SFP) at each site. Currently, in case of Kori Unit 2, about 93.6% of spent nuclear fuel is stored in SFP. Without clear disposal policy determined for spent nuclear fuel, the storage capacity in each nuclear power plant is expected to reach saturation within 2030. Currently, the SFP stores not only spent fuel but also various non-fuel assembly (NFA). NFA apply to all device and structures except for fuel rods inserted in nuclear fuel assembly. The representative NFA is control element driving mechanism (CEDM), in-core instrument (ICI), burnable poison, and neutral resources. Although these components are irradiated in the reactor, they do not emit high-temperature heat and high radiation like nuclear fuel, so if they are classified as intermediate level waste (ILW) and low level waste (LLW) and moved outside the SFP, positive effects such as securing spent fuel storage space and delaying saturation points can be obtained. Therefore, this study analyzes the status of spent fuel and Non Fuel Assembly (NFA) storage in SFP of domestic nuclear power plants. In addition, this study predict the amount of spent fuel and NFA that occur in the future. For example, this study predicts the percentage of current and future ICIs and control rods in the SFP when stored in the spent fuel storage rack. In addition, the positive effects of moving NFA outside the SFP is analyzed. In addition, NFA withdrawn from SFP is classified as ILW & LLW according to the classification criteria, and the treatment, storage, and disposal methods of NFA will be considered. The study on the treatment, storage, and disposal methods of NFA is planned to be conducted by applying the existing KN-12 & KN-18 containers and ILW & LLW containers being developed for decommissioning waste.
Commercial operation of KORI Unit 1 ended in 2017, and the final decommissioning plan is currently under approval from the KINS. In order for the dismantling waste to go to the repository, it is judged that the radioactive waste generated during the commercial operation should be treated and disposed in advance. Among these radioactive wastes, spent filters contain various radionuclides. The radiation dose rate from the radiation coming out of the filters ranges from a low dose rate to high dose rate. Therefore, in order to handle the spent filters, a remote processing system is required to reduce the radiation exposure of workers. This paper evaluates the radioactive inventory of filters that are stored in the filter room at the KORI unit #1. For this purpose, a method for predicting the radioactivity of each nuclide in the filter, based on the radiation dose rate, has been described using the MicroShield code, which is a commercial shielding code. The information on the filters in the field has only the creation date, type, size, and surface dose rate. In order to evaluate the radioactivity inventory using such limited data, it is possible to know the nuclide radioactivity ratio in the filter. We took out some of the filters stored on site and measured from using the ISCOS system, a gamma nuclide analyzer. The radioactivity of each nuclide in the filter was inferred by modeling with the MicroShield code, based on the radiation dose rate and the radioactivity value of each nuclide measured in the field.
Integrity evaluation scheme for Spent Fuel (SF) dry storage has been developed under transportation failure modes. This method especially considered the degradation characteristics of Spent Fuel (SF) during dry storage such as radial and circumferential hydride content, hydride volume fraction, oxide thickness, etc. Hydride and zircaloy cladding are considered as material composite system, using correlation models related to material properties. Critical Strain Energy Density (CSED) is compared with Strain Energy Density (SED), to evaluate cladding integrity. CSED serves as material characteristics, while SED can be considered as boundary condition. To calculate the CSED of cladding in the lateral failure mode, circumferential hydride concentration is used. SED is calculated considering both the bending moment and axial load. On the other hand, in the longitudinal failure case, fuel rod temperature, internal pressure, hoop stress, radial hydride concentration is used to calculate CSED. And pinch force (contact) was considered to evaluate SED. Model validations were conducted by comparing hot cell SF test and existing validated evaluation results. To separately handle normal transportation conditions from hypothetical accident conditions, SED according to stress-strain analysis results was separated into elastic and plastic regions. As a result of applying this scheme for 14×14 SF, failure probability of normal condition was zero, which is the similar result with DOE and same with EPRI. Regarding accident condition, lateral case showed similar result, but longitudinal case showed different but reasonable result, which was due to the different analysis conditions. The proposed methodology which was indigenously developed through this study is named as K-method.
To predict the quality of Fuji apples, this study investigated the characteristics and correlations of their fruit quality according to storage method and storage period. Fuji apples were stored in cold storage at 0oC for 250 days with no treatment, with 1-MCP treatment, and under controlled atmosphere (CA) storage. According to the storage method, the weight loss was the lowest in the CA-treated group (3.43%) until 250 days, and the change in fruit firmness was the least in the 1-MCP group. The titratable acidity remained above 0.2% for 1-MCP and CA storage until 250 days and decreased to 0.1% for cold storage. The principal component analysis showed a difference in quality between the 1-MCP group, CA group, and cold storage group after 200 days of storage. Six types of volatile components were commonly detected in all storage methods, while three types of independent components with a low threshold were detected in 1-MCP. Weight loss, titrable acidity, and firmness were highly correlated with physicochemical quality, and CA storage was judged to be a long-term storage technology that satisfies consumers’ tastes by maintaining excellent flavor and quality.
The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.
This study evaluated the Protaetia brevitarsis larvae powder’s characteristic changes using hot air drying (60±2.5oC, 12 h) with different pre-treatment methods, including two sacrifice methods, two storage temperatures, and two defatting processes. Appearance, yield, moisture contents, pH, color, proximate analysis, volatile basic nitrogen level, DPPH radical scavenging activity, and total phenol content were assessed. Results revealed that a combination of blanching, defatting, and -20oC storage temperature resulted in higher total phenol contents, lower water contents, and lower volatile basic nitrogen levels than other methods. Defatted treatment resulted in a higher L-value than the non-defatted treatment. Taken together, these results indicate that a combination of -20oC storage, blanching, and defatting is the optimal pre-treatment method for obtaining P. brevitarsis larvae powder with high total phenol content, low water content, and low volatile basic nitrogen, taking into account cost efficiency considerations.
In Korea, research on the introduction of dry storage facility is being conducted as an alternative to saturation of temporary storage facilities for spent nuclear fuel. The introduction of dry storage facilities requires a radiological impact assessment on the workers of the facility, and for this, an appropriate exposure scenario must be derived through work procedure analysis. In this study, the procedure for storing spent nuclear fuel in dry storage facilities was analyzed based on the case of evaluating the radiological impact of workers in dry storage facilities abroad. We investigated cases of radiological impact assessment on workers at on-site dry storage facilities by PNNL, Dominion, and P. F. Weck. PNNL and Dominion analyzed the storage work procedure of the VSC (Vertical Storage Cask) method using CASTOR V/21, TN-32, respectively, and conducted a radiological impact assessment. P. F. Weck analyzed the storage work procedure of various spent nuclear fuel casks for VSC and HSM (Horizontal Storage Module), conducted a radiological impact assessment. As a result of comparing the procedure for storing spent nuclear fuel by case, it was found that the storage procedure was determined by the storage method and the cask type. In the case of VSC method, canister-type casks and basket-type casks are used, and the storage procedure are partially different according to each. Canister-type cask requires repackaging from transfer overpack to storage overpack, but basket-type cask doesn’t require that procedure. In the case of the HSM method, only the canister type cask was found to be used. However, the storage procedure was different depending on the type of HSM system. Depending on the type of HSM system, the necessity of cask for on-site transport was different. In this study, we investigated and analyzed the work procedure according to the storage method of dry storage facilities abroad. It was found that the dry storage procedure of spent nuclear fuel different according to the storage method and type of cask. The results of this study can be used as basic when deriving the exposure scenario for spent nuclear fuel dry storage workers suitable for the domestic situation.
2020년 경기도내 유통 중인 고춧가루의 미생물 오염도를 구매 장소, 원산지, HACCP 및 살균 여부에 따라 조사 하고, 보관방법에 따른 품질 변화를 연구하였다. 유통 중인 고춧가루 100건을 수거하여 검사한 결과 3건(대형마트 2건, 재래시장 1건)에서 Bacillus cereus가 검출되었으며, 27건(대형마트 9건, 재래시장 18건)에서 Clostridium perfringens가 검출되었다. 대형마트와 재래시장에서 수거 한 고춧가루의 일반세균수 검출량은 통계적으로 유의적인 차이는 없었으나 7 log CFU/g을 초과하는 고춧가루의 수는 대형마트보다 재래시장이 더 많았다. 보관온도(30oC, 4oC, -20oC)와 보관용기(지퍼백, 비닐봉투)에 따라 7개월까지 저장 실험한 결과, 저장 기간에 따라 미생물학적 품질 에는 큰 차이가 나타나지 않았다. 그러나 30oC에 저장한 고춧가루의 수분함량 및 ASTA color value는 저장 3개월 이후 크게 감소하였다. 따라서 고춧가루의 장기 보관 시 품질을 유지하기 위해서는 냉장고 또는 냉동고에 보관하는 것이 바람직하다고 생각된다.
This study was carried out to investigate the changes of the microbiological contamination levels, pH, acidity, solid contents, total phenol contents, and color difference of cold-brew coffee products during 4 weeks at room and cold temperatures. The 17 sample coffees were purchased from regional cafes in Jeonju. Each coffee was self-blended by the cafes. Esherichia coli was not detected in all the samples, but bacteria were detected in 1 sample and yeast and molds were detected in 4 samples. Of the samples stored at room temperature (25oC) after 4 weeks, general bacteria were detected in 4 samples (3.0×101 cfu/ml-1.7×103 cfu/ml), and yeast and molds were detected in 11 samples (1.3×101 cfu/ml - 3.1×105 cfu/ml). In the case of the samples stored at cold temperature (4oC), general bacteria were detected in 3 samples, and yeast and molds were detected in 6 samples although the level of contamination was lower than that at room temperature. pH and acidity decreased during the storage period, but the total phenol content did not change. In the case of chromaticity, redness and yellowness tended to decrease.
There are several methods of peak-shaving, which reduces grid power demand, electricity bought from electricity utility, through lowering “demand spike” during On-Peak period. An optimization method using linear programming is proposed, which can be used to perform peak-shaving of grid power demand for grid-connected PV+ system. Proposed peak shaving method is based on the forecast data for electricity load and photovoltaic power generation. Results from proposed method are compared with those from On-Off and Real Time methods which do not need forecast data. The results also compared to those from ideal case, an optimization method which use measured data for forecast data, that is, error-free forecast data. To see the effects of forecast error 36 error scenarios are developed, which consider error types of forecast, nMAE (normalizes Mean Absolute Error) for photovoltaic power forecast and MAPE (Mean Absolute Percentage Error) for load demand forecast. And the effects of forecast error are investigated including critical error scenarios which provide worse results compared to those of other scenarios. It is shown that proposed peak shaving method are much better than On-Off and Real Time methods under almost all the scenario of forecast error. And it is also shown that the results from our method are not so bad compared to the ideal case using error-free forecast.
This study analyzes the certification system and international standard trend for cold storage and proposes evaluation method for the development of KS in accordance with international standards so that high quality products can be supplied to consumers. The international standard for cold storage can be divided into three categories: refrigerator unit, refrigerator warehouse, and cold chain. Each similar standard was analyzed and studied. Among them, AHRI's international standard is the most advanced standard, so test methods and conditions are matched. Finally, the performance evaluation technology and the performance evaluation technology for the refrigerator unit suitable for the domestic situation using the analyzed method were proposed.