간행물

한국분말야금학회 학술대회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

한국분말야금학회 2006년도 춘계학술대회논문집 (2006년 4월) 443

141.
2006.04 구독 인증기관·개인회원 무료
The filling property of the binder treated iron based powder made of atomized iron powder was compared with that of the one made of reduced iron powder. The latter one showed a better filling property than the former one, although the original reduced powder showed a worse flow rate. Changing the particle size distribution of the original atomized powder from wide to narrow like the original reduced iron powder, improved the filling property of the binder treated powder. As a result, the particle size distribution of the original iron powder was found to strongly affect the filling property of the binder treated powder.
142.
2006.04 구독 인증기관·개인회원 무료
The results of monotonic and cyclic uniaxial compression tests, in which the deviatoric component of the stress is predominant, carried out on green and recrystallized iron compacts with different levels of density are presented and discussed in order to analyse the macro and micro-mechanisms governing the mechanical behaviour of non-sintered PM materials. The plastic deformation of the particles, especially at the contact areas between neighbouring grains, produces an internal friction responsible for the main features observed in the behaviour of green metallic compacts. These results show important discrepancies with the plasticity models, Cam-Clay and Drucker-Prager Cap.
143.
2006.04 구독 인증기관·개인회원 무료
Densification behavior of various metal and ceramic powder was investigated under cold compaction. The Cap model was proposed based on the parameters obtained from axial and radial deformation of sintered metal powder compacts under uniaxial compression and volumetric strain evolution. For ceramic powder, the parameters were obtained from deformation of green powder compacts under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powder under cold compaction.
144.
2006.04 구독 인증기관·개인회원 무료
Cylindrical specimens with different levels of density have been submitted to uniaxial compression tests with loading and unloading cycles. The analysis of the elastic loadings shows a non linear elasticity which can be mathematically represented by means of a potential law. Results are explained by assuming that the total elastic strain is the contribution of two terms one deriving from the hertzian deformation of the contacts among particles and another that takes into account the linear elastic deformation of the powder skeleton. A simple model based in an one pore unit cell is presented to support the mathematical model.
145.
2006.04 구독 인증기관·개인회원 무료
Densification behavior of iron powder under cold stepped compaction was studied. Experimental data were also obtained for iron powder under cold stepped compaction. The elastoplastic constitutive equation based on the yield function of Shima and Oyane was implemented into a finite element program (ABAQUS) to simulate compaction responses of iron powder during cold stepped compaction. Finite element results were compared with experimental data for densification, deformed geometry and density distribution.
146.
2006.04 구독 인증기관·개인회원 무료
Numerical Simulation of powder die pressing is conducted on Case Study geometry. Influence of fill density distribution and punch kinematics upon green density distribution and punch loading are studied and discussed. Deviations in punch kinematics due to punch deflection influence the most the results in term of density and force.
147.
2006.04 구독 인증기관·개인회원 무료
In contrast with the Finite Element Method, the Discrete Element Method (DEM) takes explicitly into account the particulate nature of powders. DEM exhibits some drawbacks and many advantages. Simulations can be computationally expensive and they are only able to represent a volume element. However, these simulations have the great advantage of providing a wealth of information at the microstructural level. Here we demonstrate that the method is well suited for modelling, in coordination with FEM, the compaction of ceramic particles that have been aggregated. Aggregates of individual ceramic crystallites that are strongly bonded together are represented by porous spheres.
148.
2006.04 구독 인증기관·개인회원 무료
During cold compaction processes loose powder is pressed under tooling action in order to produce complex shaped engineering components. Here, the analysis of the plastic deformation of granular packings is of fundamental importance to the development of computer simulation models. Powders can be idealized by packing discrete particles, where each particle is a sphere meshed with finite elements. The pressing of a body centered cubic packing was compared with numerical prediction and experimental data. The global response was expressed in force-displacement curve, and the accuracy of the numerical models analyzed for high relative densities up to 0.95.
149.
2006.04 구독 인증기관·개인회원 무료
The deformation under radial pressure of rectangular dies for metal powder compaction has been investigated by FEM. The explored variables have been: aspect ratio of die profile, ratio between diagonal of the profile and die height, insert and ring thickness, radius at die corners, interference, different insert materials, i. e. conventional HSS, HSS from powders, cemented carbide (10% Co). The analyses have ascertained the unwanted appearance of tensile normal stress on brittle materials, also "at rest", and even some dramatic changes of stress patterns as the die height increases with respect to the rectangular profile dimensions. Different materials behave differently, mainly due to difference of thermal expansion coefficients. Profile changes occur when the dies are heated up to the temperature required for warm compaction. The deformation patterns depend on compaction temperature and thermal expansion coefficients.
150.
2006.04 구독 인증기관·개인회원 무료
With the onging trend of weight saving in automobiles, the application of light alloys is increasing. Recently, aluminum powder metallurgy has been the subject of renewed attention due to the combination of lightweight of aluminium and the efficient material utilisation of the powder metallurgical process, which offer attractive benefits to potential end-users. This study is to explore the use of warm compaction process to aluminium powder metallurgy. This paper presents a detailed study of the effect of warm compression and sintering conditions on the resultant microstructures and mechanical properties of Al-Cu-Mg-Si PM blend.
151.
2006.04 구독 인증기관·개인회원 무료
In recent years, demands for sintered ferrous material with higher strength are increasing. To satisfy these demands, studies and commercial use of the die wall lubrication method, the warm compaction method and the combination of both methods are widely carried out to achieve high density. The die wall lubrication warm compaction method makes it possible to achieve high density by reducing internal lubricant through die wall lubrication, although the method involves several issues such as prolonged cycle time due to lubricant spraying and difficulty in spraying lubricant in the case of compacting with complicated geometry. Meanwhile, the conventional warm compaction method requiring no die wall lubricant application cannot achieve such a high density as in the case of die wall lubrication warm compaction due to higher volume of internal lubricant. However, this report discloses our study result in which the possibility of improving density is exhibited by using a lubricant type with superior dynamic ejection property that can reduce volume of lubricant additive.
152.
2006.04 구독 인증기관·개인회원 무료
The high pressure compaction without internal lubricant and the high green density even with the pore free density were achieved by the newly developed die wall lubricant for warm compaction. This developed die wall lubricated warm compaction followed by high temperature sintering resulted in not only the superior mechanical property but also the low dimensional change. In this paper, the effects of increasing the green density on the sintered density, the dimensional change and the mechanical property are mainly discussed
153.
2006.04 구독 인증기관·개인회원 무료
PM recent developments focus on increasing this technology's competitiveness when compared to wrought materials. Warm compaction allows the replacement of a double press double sinter process with a single warm press and sintering step, thus allowing cost and time savings. Moreover there are added benefits to consider such as reducing work in process and lessening part's logistics cost. This paper presents a successful industrial trial to replace a double press-double sinter process with a warm die compaction and sintering process. The part chosen was a high performance gear containing 0,9% wt. carbon. Sintering was conducted in a belt furnace at in a nitrogen rich atmosphere with rapid cooling process in order to obtain a quasi fully martensitic structure with a minimum of 700HV0,1 and 450HV10 after annealing. The balance between properties and cost is favoured by the use of a singular lubricant developed in a Eureka frame project together with POMETON S.A. and die warm compaction. Warm compaction is only needed to be effective on the gear teeth, in order to achieve the required properties. Therefore only the die is actually heated. This simplified system avoids flow rate problems typically involved when using more elaborate warm compaction equipments.
154.
2006.04 구독 인증기관·개인회원 무료
An apparatus measuring changes of various forces directly and continuously was developed by a way of direct touch between powders and transmitting force component, which can be used to study forces state of powders during warm compaction. Using the apparatus, warm compaction processes of iron-based powder materials containing different lubricants at different temperatures were studied. Results show that densification of the iron-based powder materials can be divided into four stages, in which powder movement changes from robustness to weakness, while its degree of plastic deformation changes from weakness to robustness.
155.
2006.04 구독 인증기관·개인회원 무료
There is an increasing demand for PM-processes with the capability to produce parts of higher complexity than with conventional press and sinter technology in high production numbers. Warm-flow-compaction (WFC) makes use of improved flowability of powders when blended in an appropriate ratio with fine powder fractions and lubricating binders. Here the process is shown with examples of PM-Steels. General features possible with the process like pressing of undercuts and threaded bores are shown.
156.
2006.04 구독 인증기관·개인회원 무료
A ball-shape alumina arc-tube for low-wattage lamp was developed by the PIM process. An ultra high purity translucentgrade alumina powder was used. In injection molding process, a hot-runner type mold was developed. The translucent-grade alumina powder was extremely sensitive to contamination so that the injection molding condition and atmosphere control in the furnace should be taken care of with extreme caution. Contamination sources were pinpointed with EPMA. The arc-tube was molded in half and two halves were bonded in the middle by a new bonding technique at room temperature developed in this study.
157.
2006.04 구독 인증기관·개인회원 무료
In this experimental work, the development of a multicomponent binder system based on high density polyethylene (HDPE) and paraffin wax for Powder Injection Molding of Alumina parts was carried out. The optimum composition of the injection mixture was established through mixing torque measurements and a rheological study. The maximum powder loading was 58 vol%. The miscibility of organic components and the optimum injection temperature was evaluated by thermal characterization of binder and feedstock. The thermal debinding cycle was developed on the basis of thermogravimetrical analysis of the binder. After sintering the densities achieved were closed to 98% of the theoretical one.
158.
2006.04 구독 인증기관·개인회원 무료
Organic binders are usually pre-mixed with ceramic powders to enhance the formability during the shape forming process. These binders, however, must be eliminated before sintering in order to avoid pore formation and unusual grain growth during sintering. The present work was performed to investigate the effects of residual binder on grain growth behavior during sintering of piezoelectric ceramics. The microstructures of sintered samples were examined for various thermal processes and atmosphere at debinding. Addition of binder seems to promote abnormal grain growth especially in incompletely debinded regions and to make the grain shape change from corner-rounded to faceted.
159.
2006.04 구독 인증기관·개인회원 무료
Production components fabricated by metal powder injection molding are analyzed for features to identify the design window for this powder technology. This reverse approach lets the designer see where PIM has a high probability to succeed. The findings show that the most suitable components tend to be less than 25 mm in size and less than 10 g in mass, are slender, and have high complexity.
160.
2006.04 구독 인증기관·개인회원 무료
The results of investigations in screw design for metall injection molding (MIM) will be presented. The consistency of cavity pressure, metering time and MFQ (monitoring of feedstock quality; parameter measured during metering) was chosen to compare different screws. A simulation program was used to optimize the conveying and melting mechanisms in the plastification unit. The theoretical background of this simulation programm will be explained.