간행물

한국분말야금학회 학술대회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

한국분말야금학회 2006년도 추계학술대회논문집 (2006년 9월) 358

21.
2006.09 구독 인증기관·개인회원 무료
This paper will describe a powder and processing method that facilitates single press-single sintered densities approaching 7.5 g/cm³. At this sintered density, mechanical properties of the powder metal (P/M) component are significantly improved over current P/M technologies and begin to approach the performance of wrought steels. High performance gears have the added requirement of rolling contact fatigue durability that is dependent upon localized density and thermal processing. Combining high density processing of engineered P/M materials with selective surface densification enables powder metal components to achieve rolling contact fatigue durability and mechanical property performance that satisfy the performance requirements of many high strength automotive transmission gears. Data will be presented that document P/M part performance in comparison to conventional wrought steel grades.
22.
2006.09 구독 인증기관·개인회원 무료
The achievement of high density at reasonable cost is one of the major challenges of the P/M industry. One of the key factors contributing to the compressibility of a mix is the lubricant. New experimental lubricants enabling higher green density by conventional compaction or temperature-controlled die compaction were identified. The compaction and ejection characteristics of these new lubricants as measured with a fully instrumented lab press are presented and compared to that of conventional lubricants.
23.
2006.09 구독 인증기관·개인회원 무료
Filling of the tool die directly influences dimensional tolerances and density variation. To minimize the variations in filling, both within different sections of the cavity and from part to part, are of great importance for produce high quality P/M parts. Filling of the tool die is also one of the limiting factors in the productivity in powder pressing. By using aeration filling in combination with bonded powder mixes, both weight scatter and productivity can be improved. In this presentation results are presented showing the benefit of using aeration filling for different types of powders
25.
2006.09 구독 인증기관·개인회원 무료
This lecture introduces new press, adapter and control concepts to size multi-level sintered components. The essential thing here is that the advantages of the multi-plate technology have been applied to the sizing adapter concept. Thus, the new concept meets the demands for a modern P/M manufacture and offers sufficient potential to size any future, complex sintered components such as synchronizer hubs, oil pump wheels and VCT parts with highest precision. Furthermore, it outlines a new flexible concept for the parts transfer, including feeding, orientation and lubrication while responding to the high demands on process stability and short change-over times.
26.
2006.09 구독 인증기관 무료, 개인회원 유료
SMS Meer GmbH, formerly Mannesmann and today part of the SMS Group, has been building powder presses since the early 1950s. The patents developed here in this field have long since documented the pioneering work carried out for the PM industry. The paper focuses on the challenge of reconciling the contradictory demands in the production of highly complex and crack-free PM parts. The process employed with the patented Controlled Punch Adapter (CPA) [1] counters possible cracking reliably and directly at the source. In this way is it possible to develop new and highly complex parts to series production maturity in a minimum of time even without simulation of the press cycle [2]. The quality data achieved in the production series, almost 100% crack and micro crack-free green parts with optimum density distribution over all press levels is unrivalled and thus gives the user a clear lead over the competition.
3,000원
27.
2006.09 구독 인증기관·개인회원 무료
We investigated the mechanism how the high green density can be provided during die lubricated warm compaction (WD). We observed and analyzed the densification processes of iron powders including different contents of an inner lubricant, and measured the lateral pressure at the die wall during WD in comparison with conventional compaction and warm compaction. As a result, the high density in WD was due to not only the particles-deformation enhanced by warming powders but also the particles-rearrangement promoted by reducing an amount of the inner lubricant rather than the die lubrication.
28.
2006.09 구독 인증기관·개인회원 무료
Oil Pump rotor is essential parts for automobile and, it is consisted of drive rotor and driven rotor in general. These parts are requested different properties according to environment. There are 2 types of Oil Pump rotor according to its usage. One is used for electric system, and the other is used for shaft-driven system. Especially, high precision and functionality is required in electric pump, and cost reduction is required in shaft-drive pump without slowing down its performance. This paper is mainly describing about the non-machine treated shaft-drive pump, based on the trial sample producing process.
29.
2006.09 구독 인증기관·개인회원 무료
In order to develop the SUS304L housing by powder metallurgy for an optical device useful for the FTTH communication system, the optimum compacting pressure and sintering temperature were investigated using granulated powder as the material to satisfy high air-tightness and high laser-weldability. Then the laser-welding test of specimen made under the optimum condition was carried out to observe welding sputters.
30.
2006.09 구독 인증기관·개인회원 무료
P/M enables the economical production of components for many kinds of gears. Functionally, the sub gear requires high tooth accuracy and bending fatigue strength. The whole tooth profile was sized after sintering to satisfy the gear tooth accuracy specification. The part was redesigned to reduce machining requirements. The required bending fatigue strength was achieved through appropriate material choice and induction of compressive residual stress by shotpeening after carburizing. The P/M sub gear replaced a forged steel gear, satisfied performance requirements, expanded the use of P/M applications and provided over 30% cost reduction.
32.
2006.09 구독 인증기관·개인회원 무료
The metal injection molding process was applied to produce Ti-6Al-7Nb alloys using 3 types of mixed powders, first is a mixture of Ti and Al53.3Nb pre-alloyed powders, second is a mixture of Ti, TiAl and Nb powders, and third is a mixed elemental powders of Ti, Al and Nb. The effects of the 3 types of mixed powders and sintering conditions on the microstructure, relative density and mechanical properties of injection molded compacts were mainly investigated. The sintered compacts using first and second powders showed higher density and mechanical properties as compared to the compacts using the third powder which existed many and a little large pores in the microstructure because of the melting of Al during sintering steps. Also the oxygen content of the compacts using second powder was higher than that of the compacts using other powders. Eventually, the mechanical properties of the compacts using a mixture of Ti+Al53.3Nb or Ti+TiAl+Nb powders were above 800MPa in tensile strength and above 10% in elongation, which were similar to the properties of wrought materials.
33.
2006.09 구독 인증기관·개인회원 무료
Ti-6Al-4V has low specific gravity, high corrosion resistance and superior mechanical properties but it is very difficult to control oxygen content in MIM process. It is necessary to use powders with coarse particle size to decrease oxygen content of powders, so feedstocks with poor fluidity and sintered bodies with lower density are obtained in such cases. Fine titanium hydride-dehydride powders were blended with atomized powders to accomplish higher fluidity and sintered density. Sintered bodies had higher sintered density and mechanical properties equivalent to those of wrought materials by controlling oxygen content less than 0.35mass%.
34.
2006.09 구독 인증기관·개인회원 무료
W-Cu alloy was very useful material for a heat sink, high electric contact and EDM electrode. Powder injection molding (PIM) is the optimum manufacturing technology to provide W-Cu components with low-cost and high-volume. We used various compositions of tungsten coated copper powders (W-Cu with 10 to 80 wt-% of copper) to manufacture W-Cu components by PIM. The optimum mixing, injection molding, debinding and sintering conditions to provide the high performance W-Cu components were investigated. The thermal and mechanical properties of W-Cu parts by PIM were measured. Finally, we can verify the high performance of W-Cu components by PIM with the tungsten coated copper.
35.
2006.09 구독 인증기관·개인회원 무료
Ceramic Injection Moulding (CIM) technology has been successfully used for the fabrication of Mn-Zn Ferrite part. The binder was composed by polypropylene and paraffin wax. The optimal powder loading (58% vol.) was determined by means of rheological measurements. Threedifferent parts, toroids, bending and tensile probes were injected. Thermal and solvent-thermal debinding was designed based on DSC and TGA studies of the binder. The time of the debinding cycle was reduced using n-heptane to dissolve previously the paraffin wax. Final properties have been determined and compared with uniaxial pressure parts values. The densities obtained were slightly higher than those of uniaxial pressure parts and the magnetic properties presented similar values.
36.
2006.09 구독 인증기관·개인회원 무료
Mo2FeB2 boride base cermets produced by a novel sintering technique, called reaction boronizing sintering through a liquid phase, have excellent mechanical properties and wear and corrosion-resistances. Hence, the cermets are applied to the injection molding die-casting machine parts and so on. We investigated that the effect of deoxidization and sintering temperature on mechanical properties and deformation of the MIM processed cermets. As a result, deoxidization temperature of 1323K and sintering temperature of 1518K were suitable. The MIM products of the cermets showed allowable dimensional accuracy and the same mechanical properties as the presssintered ones.
37.
2006.09 구독 인증기관·개인회원 무료
In this study, copper vapor chambers with built-in cooling fins, which eliminated the soldered or brazed joints in the conventional vapor chamber, were fabricated using the metal injection molding process. The results show that with optimized molding parameters, fins with an aspect ratio up to 18 could be produced. After sintering, the densities of the fin and chamber reached 96%. With only 32 cooling fins and a small fan installed, the thermal resistance of the heat sink was 1.156 ℃/W, and the power dissipation was 40W when the junction temperature was 70℃. When copper powder was sintered onto the chamber to make a vapor chamber, the thermal resistance decreased to 1.046℃/W.
38.
2006.09 구독 인증기관·개인회원 무료
The MIM industry is currently focusing on parts that are used in automobiles and medical instruments. Many of the parts in these categories are very small and often not easy to machine because of its complex geometry. Therefore MIM is well suited for the production of these parts. We tested the sinterability of SUS316L ultra fine powders (3,4, 6, 8micron) produced by ATMIX high-pressure water-atomization, and it showed excellent results. A density of 97% theoretical was obtained by sintering at 1373K when using the ultra fine powder (3micron). Specifically, the finer the powder size, higher was the sintered density. The surface roughness and accuracy are also greatly improved with ATMIX ultra fine powder.
39.
2006.09 구독 인증기관·개인회원 무료
Mechanical properties of metal injection molded titanium and titanium alloy parts were investigated in this study. Material powders with low oxygen content and spherical shape were obtained by electrode induction-melting gas atomization which could melt and atomize titanium and titanium alloy bars with no touch on crucible or tundish. Tensile specimens were fabricated from obtained powders by metal injection molding process. Tensile strength of the specimens increases with increasing oxygen content. This result corresponds to a tendency of wrought metal.
40.
2006.09 구독 인증기관·개인회원 무료
Gas surface treatment is considered to be effective for titanium because of its high reactivity. In this study, we investigated the gas nitriding mechanism in titanium sintered parts produced by metal powder injection molding (MIM) process. The microstructure and nitrogen content of sintered MIM parts were greatly affected by nitriding conditions. Nitriding process strongly depended on the specimen size, for example, the size of micro metal injection molding (μ-MIM) product is so small and the specific surface is so large that the mechanical and functional properties can be modified by nitriding.
1 2 3 4 5