검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,836

        962.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was to investigate the effect of the addition of red ginseng powder in Dasik. The addition of red ginseng powder in Dasik that we used with was in the ratio of 0%, 2%, 4%, 6% and 8% of red ginseng powder to Dasik in weight. Also, we used two different kinds of Dasik. One was made of starch and the other was made of flour. The physic-chemical analysis and sensory test were performed on the Dasik. The red ginseng powder added flour and starch Dasik showed lower moisture content and higher ash content compared with the non-added control group. In color analysis, whereas L value lowed at the addition of red ginseng powder, a and b value increased at the addition of red ginseng powder. In mechanical texture test, addition of red ginseng powder starch Dasik showed high hardness, cohesiveness and brittleness. Addition of red ginseng powder flour Dasik showed high springiness and gumminess. In the sensory test, the addition of the red ginseng powder reduced the sweetness and increased the surface color and the flavor. There was no difference in preference between the Dasik with up to 4% of red ginseng powder added and the control group, but the Dasik with 6% or more red ginseng was found undesirable (p<0.05). In conclusion, the Dasik with up to 4% addition of red ginseng powder would be the useful method to fulfill the traditional quality of Dasik. It was also found that the flour Dasik was to be more preferable than the starch Dasik.
        4,000원
        963.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to investigate the quality characteristics of breads with the addition of sweet pumpkin powder. Farinogram showed that the absorption rate of the dough decreased, the development time and stability became shortened, and the degree of attenuation tended to be grown along with increasing the amount of pumpkin powder. From the amylogram, it was found that the gelatinization starting temperature and the maximum viscosity of pumpkin powder added dough seemed to be decreased as the amount of pumpkin powder was increased. Extensogram showed that there was a decrease in the degree of extension of the dough added with increasing the amount of pumpkin powder, while an increase in the degree of resistance and resistance/extensibility. The lightness (L value) and redness (a value) of bread was found to be decreased with increasing the amount of pumpkin powder, while the yellowness (b value) increased. In terms of the dough texture, for which the hardness, cohesiveness and gumminess of the dough were measured, there were no significant differences between groups, while the dough added with 8.0% pumpkin powder showed a significant decrease in the elasticity. The results of sensory evaluation showed that the highest score of color (p<0.05) and taste (p<0.05) were obtained from the bread added with 6.0% and 8.0% pumpkin powder, while the highest score of texture in control and 3.0% pumpkin bread. In addition, the highest score of flavor (p<0.05) and overall acceptance (p<0.05) were observed in bread added with 6.0% pumpkin powder. Upon the results of this study, it was assumed that the development of food products using pumpkin are prospective in response to health-oriented consumers.
        4,000원
        966.
        2006.04 구독 인증기관·개인회원 무료
        In the present study, the powder metallurgical fabrication of thermoelectric materials has been studied with specific interest to control the microstructure by the mechanical grinding process. The thermoelectric powders with a various particle size distribution were prepared by the combination of the mechanical milling and blending processes. The specific electric resistivity of the sintered bodies mainly depended on the orientation of the crystal structure rather than the particle size of the raw powders.
        967.
        2006.04 구독 인증기관·개인회원 무료
        The effects of particle size on the surface properties of hydro-thermally synthesized barium titanate powders were investigated by means of particle size analysis, specific surface area, SEM, zeta potential and XPS. Particle sizes were measured by laser light scattering and are in the range of 150 to 1100nm. Zeta potential increased with increasing particle size and it was large minus value in the range of particle size from 500 to 900nm, which seems to be related with the dissolution of ion in these particle sizes from the analysis of surface properties by XPS.
        969.
        2006.04 구독 인증기관·개인회원 무료
        Development of recycling method at cemented carbide scraps was researched. Some properties of recycled cemented carbides were investigated. Recycled WC fine powder suffered the surface oxidation. Therefore it was necessary to be done by reduction treatment at 1073K-3.6ks under hydrogen atmosphere. When sintering condition at 1673K-3.6ks was treated under vacuum condition, it gained the deflective strength of about 90%, and gained hardness and sintering density about same value compared with commercial alloys. As a result, it was able to recycle only by 7 processes.
        970.
        2006.04 구독 인증기관·개인회원 무료
        This is about the effects deoxidization, carbonization and alloying preparation on fine grain W, WC, and grade YG8 powder reduced by "yellow tungsten oxide" and "blue tungsten oxide". The result indicates that yellow tungsten has single composition and blue tungsten oxide has complex composition. With this feature, yellow tungsten oxide got better uniformity and concentration distribution on fine particle size W and WC powder than blue tungsten oxide's. The grade alloy YG8 that made of this W or WC powder has uniform alloy construction, concentrated WC grain distribution and better alloy properties.
        971.
        2006.04 구독 인증기관·개인회원 무료
        Direct reduction and carburization process was thought one of the best methods to make nano-sized WC powder. The oxide powders were mixed with graphite powder by ball milling in the compositions of WC-5,-10wt%Co. The mixture was heated at the temperatures of for 5 hours in Ar. The reaction time of the reduction and carburization was decreased as heating temperatures and cobalt content increased. The mean size of WC/Co composite powders was about 260 nm after the reactions. And the mean size of WC grains in WC/Co composite powders was about 38 nm after the reaction at for 5 hours.
        973.
        2006.04 구독 인증기관·개인회원 무료
        In the present study, the focus is on the synthesis of nanosized WC powder by the chemical vapor condensation proces. The synthesized W-C system powder by the CVC process shows W2C, W, WO3 phases and can not shows WC phase. After recarburization heat treatment under mixture gas atmosphere of argon and hydrogen gases, the synthesized W-C system powder fully transformed to the pure WC. The synthesized WC powder after recarburization heat treatment has an average particle size of 20 nm. The nano-sized WC powder can be prepared by the combination of the CVC process and heat treatment methods.
        977.
        2006.04 구독 인증기관·개인회원 무료
        Micro-porous nickel (Ni) with an open cell structure was fabricated by powder metallurgy. The pore size of the micro-porous Ni approximated and . For comparison, porous Ni with a macro-porous structure were also prepared by both powder metallurgy (pore size ) and the traditional chemical vapour deposition method (pore size ). The mechanical properties of the micro-and macro-porous Ni samples were evaluated using compressive tests. Results indicate that the micro-porous Ni samples exhibited significantly enhanced mechanical properties, compared to those of the macro-porous Ni samples.
        979.
        2006.04 구독 인증기관·개인회원 무료
        Powder forging is used for heavy-loaded parts (rings of rolling-contact bearings, gears etc.) production. Rolling contact fatigue is material property values of which characterize possibility of practical utilization of such parts. Rolling contact fatigue of some steels obtained out of prealloyed powders Astaloy CrM, Atomet 4601, Atomet 4901 and powder blends iron-carbon-nickel by hot forging is studied in the present paper. Effect of various kinds of heat and thermomechanical treatment on rolling contact fatigue is determined. Thermomechanical treatment provides optimal values of rolling contact fatigue. In this case steel structure contains up to 40% of retained metastable austenite which is transformed to martensite on trials. Thus typically crack is generated on residual pores and non-metallic inclusions instead of martensite zones in wrought steels.