검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 180

        102.
        2007.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electromagnetic wave absorbing materials have been developed to reduce electromagnetic interference (EMI) for electronic devices in recent years. In this study, Fe-Si-B-Nb-Cu base amorphous strip was pulverized using a jet mill and an attritor and heat-treated to get flake-shaped nanocrystalline powders, and then the powders were mixed, cast and dried with dielectric powders and binders. As a result, the addition of powders improved the absorbing properties of the sheets noticeably compared with those of the sheets without dielectric materials. The sheet mixed with 2 wt% powder showed the best electromagnetic wave absorption, which was caused by the increase of the permittivity and the electric resistance due to the dielectric materials finely dispersed on the Fe-based powder
        4,000원
        104.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical properties of hot-pressed composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at , showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.
        4,000원
        105.
        2006.09 구독 인증기관·개인회원 무료
        This research reports for the successful consolidation of Al2O3 powder with retained ultra-fine structure using MPC and sintering. Measurements in the consolidated Al2O3 bulk indicated that hardness, fracture toughenss, and breakdown voltage have been much improved relative to the conventional polycrystalline materials. Finally, optimization of the compaction parameters and sintering conditions will lead to the consolidation of Al2O3 nanopowder with higher density and even further enhanced mechanical properties.
        106.
        2006.09 구독 인증기관·개인회원 무료
        The compaction and sintering behavior of zirconium titanate (ZrTiO4) was investigated by means of the measurement of sintering density and shrinkage, and the observation of microstructure. With increasing the content of Al2O3 additive, Al2O3-modified zirconium titanate samples fired at 1300oC showed the anisotropic shrinkage behavior that the upper region of sintered body has higher sintering shrinkage than the low region. This difference of sintering shrinkage decreased with increasing firing temperature from 1300 to 1400oC. The SEM micrographs of powder compation show that the anisotropic shrinkage behavior is related with non-uniform density in a uniaxial compaction.
        107.
        2006.09 구독 인증기관·개인회원 무료
        Pulsed Current Sintering (PCS) process possesses some problems that need to be resolved. We, therefore aims at understanding phenomena of PCS process by presenting some basic data on in situ sintering behavior of PCS. Special graphite mold equipped with thermo couple and electrodes were designed to measure the temperature, electric current and voltage inside the powder during PCS process. We apply three types of raw materials, especially for ZnO as semiconductor, Al2O3 as non-conductor and WC as good conductor. The electric current and voltage were measured for each powder during PCS process. In addition, their electric resistance properties were calculated.
        108.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Field emission display(FED) is actively investigated in view of the development of full color flat-panel display, which can replace some cathode-ray tube(CRT). Thus, the development of new phosphors appropriate for FED is urgently needed and has been actively investigated. In this work, SrTiO3:Pr3+ phosphor was prepared by sol-gel method and the coating was applied by sol-gel method combined with sonication on these phosphor's surface into diluted precursor solution. It was found that very fine particles of coating material were formed on phosphor's surface. The luminescent intensity of SrTiO3:Pr3+ phosphor coated with SiO2 and Al2O3 was considerably increased without any noticeable change in color chromaticity. The optimum concentration of coating material was found to be 1wt% and the optimum pH value of the solution was 10.
        4,000원
        109.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aging characteristics and mechanical properties of commercial 7xxx series Al composites were investigated from viewpoint of ceramic contents. After sintering process, sintered densities of blended and composite powder were 95 and 97%, respectively. Each part was solution-treated at for 60 min and aged . And two-step aging was also performed form . The aging behavior of the sintered composite pow-der was different from that of sintered blended powder. The peak aging time of the composite was rapid as well due to strain. Before aging, mechanical properties of sintered composite powder was significantly higher than that of sintered blended powder. These increments of properties were directly affected by ceramic particles. However, after aging, incremental rate of mechanical properties was slowed in the composite
        4,000원
        111.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of Cu content on microstructure and mechanical properties of nano-sized Cu dispersed nanocomposites was investigated. The nanocomposites with Cu content of 2.5 to were prepared by reduction and hot-pressing of powder mixtures. The nanocomposites with Cu content of 2.5 and exhibited the maximum fracture strength of 820MPa and enhanced toughness compared with monolithic . The strengthening was mainly attributed to the refinement of matrix grains. The toughening mechanism was discussed by the observed microstructural feature based on crack bridging
        4,000원
        113.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In-situ processing route was adopted to disperse carbon nanotubes (CNTs) into powders homogeneously. The composite powders with homogeneous dispersion of CNTs could be synthesized by a catalytic route for in-situ formation of CNTs on nano-sized Fe dispersed powders. CNTs/Fe/ nanopowders were densified by spark plasma sintering (SPS). The hardness and bending strength as well as electrical conductivity increased with increasing sintering temperature. However, the electrical conductivity of the composites sintered at above showed decreased value with increasing sintering temperature due to the oxidation of CNTs
        4,000원
        116.
        2005.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An optimum route to synthesize composite powders with homogeneous dispersion of carbon nanotubes (CNTs) was investigated. nanocomposite powders were fabricated by thermal chemical vapor deposition of gas over nanocomposite catalyst prepared by selective reduction of metal powders. The FT-Raman spectroscopy analysis revealed that the CNTs have single- and multi-walled structure. The CNTs with the diameter of 25-43 nm were homogeneously distributed in the powders, and their characteristics were strongly affected by a kind of metal catalyst and catalyst size. The experimental results show that the composite powder with required size and dispersion of CNTs can be realized by control of synthesis condition
        4,000원
        118.
        2004.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical property of hot-pressed composites with a different temperature for atmosphere changing from H to Ar have been studied. When atmosphere-changed from H to Ar gas at 145, the hot-pressed composite was characterized by inhomogeneous microstructure and low fracture strength. On the contrary, when atmosphere-changed at low temperature of 110 the composite showed more homogeneous microstructure, higher fracture strength and smaller deviation in strength. Based on the thermodynamic consideration and microstructural analysis, it was interpreted that the Cu wetting behavior relating to the formation of CuAlO is probably responsible for strong dependence of microstructure on atmosphere changing temperature. The reason for a strong sensitivity of fracture strength and especially of its deviation to atmosphere changing temperature was explained by the microstructural inhomogeneity and by the role of CuAlO phase on the interfacial bonding strength.
        4,000원
        6 7 8 9