검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 39

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The importance of urban green space creation is increasingly recognized as the most realistic and efficient approach for fine dust mitigation in urban areas. Particularly considering the characteristics of domestic cities, the application of buffer green spaces along roads can maximize the efficiency of fine dust reduction without the need for separate green space creation. Accordingly, this study analyzed the fine dust mitigation effects based on the types of plantings in the central dividers and roadside trees in Jeonju City, Jeollabuk-do. To do this, we controlled various external variables of urban space and considered the planting arrangement types in the central dividers, carrying out the analysis using a CFD simulation. The simulation results confirmed that the central dividers with plantings demonstrated more effective ultrafine dust reduction than those without. Moreover, the arrangement of roadside trees showed a greater ultrafine dust reduction effect when adopting a multilayered structure compared to a single layer. Based on these findings, we concluded that installing both trees and shrubs simultaneously in the central dividers and along roads was effective for ultrafine dust mitigation. On this basis, we quantified the dust reduction effects of plants in urban street environments and proposed planting guidelines for roadside green spaces to improve air quality.
        4,000원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박용 엔진에서 배출되는 배기가스에는 다량의 수분과 미세먼지를 포함하고 있다. 미세먼지에는 여과성 미세먼지와 배기 배 출 후 액상으로 변화하는 응축성 미세먼지가 포함되어 있으며 배출 전에 걸러지는 고체상 미세먼지보다 응축성 미세먼지가 더 많은 것으 로 보고되고 있다. 본 연구에서는 배기가스의 배기열과 수분을 회수하고 응축성 미세먼지를 제거하기 위한 실험장치를 실험실 내의 가스 보일러 배기가스를 이용하여 테스트 하였다. 배기가스는 1차적으로 냉각방식으로 수분과 응축성 미세먼지가 제거되고 2차적으로 흡수제 방식에 의해 추가적으로 수분이 제거되었다. 상대습도 측정에 의한 배기가스 수분 제거율을 계산하면 1단계 배기냉각 방식으로 73%, 2단 계 흡수제 방식으로 90% 제거되는 것으로 측정되었다. 이 과정에서 응축성 미세먼지는 80~90% 제거되는 것으로 측정되었다. 개발 시스템 에 의해 회수된 열은 공정열로 활용할 수 있으며, 회수된 물은 수처리 과정을 통해 공정수로 활용할 수 있다. 또한 현재 관리 규제가 되고 있지 않지만 미세먼지의 주요 원인인 응축성 미세먼지를 효과적으로 제거할 수 있을 것으로 기대된다.
        4,000원
        3.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Fine dust significantly affects the atmospheric environment, and various measures have been implement to reduce it. The aim of this study is to reduce fine dust on roads by implementing porous pavements and a clean road system using the low-impact development technique. METHODS : We conducted quality tests (draindown, cantabro loss rate, tensile strength ratio, dynamic stability, and indoor permeability coefficient tests) and performance evaluation (dynamic modulus and Hamburg wheel-tracking tests) on the porous asphalt mixture. Subsequently, we constructed a porous pavement road in a test bed and conducted a permeability test. In the test bed, we installed a nozzle, a water tank, and a fluid pump to water the roadside. After the clean road system was completely installed, we measured the concentration of fine dust before and after water was sprayed. Additionally, we conducted a total suspended solids (TSS) test to confirm the reduction in re-suspended dust. RESULTS : All results from the quality test of the porous asphalt mixture satisfy the standards stipulated by the Ministry of Land, Infrastructure and Transport. Results from the dynamic modulus test show a low plastic deformation resistance but a high fatigue crack resistance. The results from the Hamburg wheel-tracking test satisfy the U.S. Department of Transportation standards. After the porous pavement was constructed, a permeability test was conducted, and the result satisfies the standard value. Using a particle counter, we measured the concentration of fine dust before and after water spraying, and results show 12.08% and 10.23% for PM10 and PM2.5 particles, respectively. The results from the TSS test show that after the initial water spray, almost all re-suspended dust are removed from a road. In unfavorable road conditions, almost all re-suspended dust are removed after a second water spray. CONCLUSIONS : The results of all of quality tests performed on a porous asphalt mixture satisfy the standards. By applying the results to a test bed, the problem of securing water is solved. Using the clean road system, 12.08% and 10.23% of PM10 and PM2.5 particles are removed, respectively. The system removes PM10 particles (larger particles) more effectively compared with PM2.5 particles. IN the future, we plan to revise the maintenance plan such that the porous pavement can exhibit long-term performance. Because pipe freezing may occur in the winter, we plan to analyze the periodic maintenance plan of the porous pavement and develop a solution to mitigate the issue of freezing pipes in the winter.
        4,300원
        4.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the distribution characteristics of particulate matter (PM) in subway platforms were investigated, and the performance of hybrid filter systems was determined through the removal efficiency of PM according to various flow rates and filter structures. The hybrid filter systems were constructed in magnetic systems as (Magnet-Magnet (MM) filters and Magnet-Cascade (MC) filters). PM removal efficiencies of these filters were investigated at a subway platform for three days including weekdays and weekends. The compositions of collected PM were also analyzed. Based on the PM measurement in the subway platforms, it was confirmed that the operation of trains had a significant effect on the increase of PM concentration, and a large number of PMs were less than 1 μm in size. For the MC filter, the removal efficiency of PM1 based on the number of particles was up to 30.5%, demonstrating a relatively high removal efficiency in comparison with the MM filter. In terms of PM10, PM removal efficiencies of the MC filter with respect to the mass concentration and the number of particles were 48.3% and 14.5%, respectively. For the MC filter, it was found that the PM removal efficiency was enhanced with the increase in the flow rate. Moreover, the relatively large particle size PM (i.e., 7.5 μm - 10 μm) denoted a maximum removal efficiency of 97% in terms of the number of particles. All PMs collected by the filter were Fecontaining PMs. As a field experiment using the hybrid filter, the applicability of magnetic particle control technology was approved. Based on this result, it is expected that this study will be used as background research for the development of fine dust control technologies in a subway environment.
        4,000원
        5.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a two-stage electrostatic precipitator (ESP) was developed using a novel automatic dry cleaning device to reduce the ultrafine particles in subway stations. Collection efficiency was evaluated with a pilot scale ESP (1.2m× 1.2m) and the scale of the test duct was half of the subway air handling unit. The maximum collection efficiency for 0.3 μm particles was 96.9%. In addition, we studied a method of automatic dry cleaning for maintenance of the ESP. The cleaning efficiency was analyzed according to the cleaning flow rate for each particle loading amount to achieve a recovery rate over 90%. In addition, we derived the equation to estimate the reduction in collection efficiency according to the particle loading amount. It was confirmed that the performance of the contaminated ESP was restored to the initial state by the automatic dry cleaning in this study and that the electrical energy consumption was 5 times lower compared to utilizing conventional water cleaning.
        4,200원
        6.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 프로젝트는 최근 사회적 이슈가 되고 있는 미세먼지 저감 숲 조성을 목적으로 진행된 것이다. 대상지는 전라남도 여수 국가산업단지로 부지면적은 32,550,850㎡이다. 매립지이자 중화학공업단지라는 특수한 여건을 고려하여, 여수산단의 녹지조성 가능지 발굴을 포함한 종합적인 저감 숲 조성 마스터플랜 제시를 최종 목표로 한다. 아울러 산단 입주기업의 사업장 내부에 대한 미세먼지 저감녹지 조성에 대한 방안제시도 포함하는 것으로 진행하였다. 연구결과를 요약하면 다음과 같다. 여수 산단지역과 입주기업의 사업장 내부의 조사 분석을 실시하였고. 미세먼지 저감 숲 조성사업의 실현가능성 및 녹지조성 효과 등을 근간으로 하여 크게 3단계 사업권역으로 구분하였다. 그리고 산단 주변의 자연지형 즉 산지 및 녹지를 연계 활용하여 2개의 녹지 보전·형성축을 계획했다. 북측 녹지축은 산단 내부의 산지 및 도로녹지 등을 연계하는 1차 미세먼지 차단축, 남측 녹지축은 여수시가지로 유입되는 미세먼지 차단을 위한 2차 완충기능 목적이다. 미세먼지 저감 숲 조성 마스터플랜은 산단 도로 등 시설배치 및 녹지분포 등 공간구성에 따라 구간 및 유형을 구분하였다. 그 결과 여수 국가산단 전 지역이 총 10개 타입으로 분류되었으며, 각각의 유형에 대해 적용 가능한 미세먼지 저감 숲 및 녹지공간의 조성방법과 식재구조 그리고 저감수종 등을 제시했다. 기본계획은 산단의 도로, 녹지, 구릉지 등 공공영역 즉 사업장 외부공간을 중심으로 수립하였으며, 그 외 사업장 내부 즉 사적영역에 대해서는 입주기업의 여건 및 주변상황에 따라 선택하고 시도할 수 있도록 공간구성 및 식재수종 선정 등 다수의 계획모델을 제시했다.
        4,200원
        7.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : High concentrations of particulate matter (PM) are emitted or generated from vehicle emissions in urban roads with dense transient populations. To reduce the effect of PM emission on bus stop users at roadsides, a plan to reduce PM emitted from the roadside must be devised. In this study, an atmospheric environment at a roadside is simulated in a large-scale environment chamber, and a test for reducing PM around the bus stop is conducted by installing a bus stop adapted to a PM reduction system. METHODS : Exhaust gas is injected into the experimental and reference chambers using diesel and gasoline vehicles for roadside airquality simulations. The two vehicles are operated in an idle state without an acceleration operation to emit exhaust gas uniformly, and the initial conditions are achieved by injecting car emissions for approximately 40 min. The initial condition is set to 1 ppm of NOx concentration in the environment chamber. Between the two environment chambers, a bus stop adapted to the PM reduction system is installed in the experimental chamber to conduct a PM reduction experiment pertaining to the air quality around the roadside. The experimental progress is set as the start time of the experiment based on the time at which the initial conditions are achieved; simultaneously, the PM reduction system in the experimental chamber is operated. After the simulation is commenced, the PM concentration, which changes over time, is measured using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) without additional injection of car emissions or pollutants. The HR-ToF-AMS measures the chemical composition of non-refractory PM1.0 (NR-PM1.0) in real time. RESULTS : The NR-PM1.0 compound (organic aerosol (OA), NO3 -, SO4 2-) increases by 160% compared with the simulated initial concentration up to T90min in both environmental chambers; this is speculated to be due to secondary formation. The reference chamber indicates a slight decrease or a steady-state after T90min, whereas the experimental chamber indicates a gradually decrease as the experiment progresses. The bus stop adapted to the PM reduction system reduces the amount of black carbon in the experimental chamber by 37% at 200 min. This implies that the PM emitted from the roadside is filtered via the PM reduction system installed at the bus stop, and cleaner air quality can be provided to passengers. CONCLUSIONS : The PM reduction system evaluated in this study can be detached from and attached to the outdoor billboard of a bus stop. Since it adopts air filtration technology that uses a high-efficiency particulate air filter, it can be maintained and managed easily. In addition, it can provide an atmospheric environment with reduced PM emission to passengers as well as provide a better air-quality condition to passengers waiting for public transportation near roadsides.
        4,000원
        9.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        도심 교통섬과 도시숲 내부에서 미세먼지 농도와 영향 인자를 조사하여 숲의 미세먼지 효과를 분석하였다. 서울시 동대문구 홍릉시험림(도시숲)과 동대문구 청량리역 교차로에 조성된 숲(교통섬)에서 미세먼지 농도를 2018년 1월부터 11월까지 광산란법 기기를 적용하여 측정하였다. 연구 기간 동안 도시숲과 교통섬의 PM10 평균농도는 12.5 ㎍/㎥, 15.7 ㎍/㎥으로 나타났으며, PM2.5의 평균농도는 6.6 ㎍/㎥, 6.9 ㎍/㎥으로 나타났다. 환경부 도시대기 측정망과 도시숲 의 농도를 비교해본 결과, PM10의 저감율은 도시숲에서 66.9±28.6%, 교통섬에서 58.6±44.1%로 나타났고, PM2.5의 경우 71.3±23.0%, 64.9±31.3%로 각각 나타났다. 미세먼지 저감율의 차이는 도시숲의 규모와 구조의 차이와 관련이 있을 것이며, 풍속은 저감 요인으로 판단된다.
        4,000원
        11.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : NOx is a particle matter precursor that is harmful to humans. Various methods of removing NOx from the air have been developed. TiO2 and activated carbon are particularly useful materials for removing NOx, and the method is known as particulate matter precursor reduction. The removal of NOx using TiO2 requires sunlight for the photocatalytic reaction, whereas activated carbon absorbs NOx particles into its pores after contact with the atmosphere. The purpose of this study is to evaluate the NOx removal efficiency of TiO2 and activated carbon applied to concrete surfaces using the penetration method. METHODS : Surface penetration agents, such as silane-siloxane and silicate, were used. Photocatalyst TiO2 and adsorbent activated carbons were selected as the materials for NOx removal. TiO2 used in this study was formed by crystal structures of anatase and rutile, and plant-type and coal-type materials were used for the activated carbon. Each surface penetration agent was mixed with each particulate matter sealer at a concentration ratio of 8:2, and the mixtures were sprayed onto the surface. The NOx removal efficiency was evaluated using NOx removal efficiency equipment fabricated in compliance with the ISO 22197-1 standard. RESULTS : Anatase TiO2 showed a maximum NOx removal efficiency of 48% when 500 g/m² was applied. However, 500 g/m² of rutile TiO2 showed a NOx removal efficiency of up to 10%. When 700 g/m² of coal-based activated carbon and plant-based activated carbon was used, NOx removal efficiencies of up to 11% and 14%, respectively, were obtained. CONCLUSIONS : Rutile TiO2, a coal-based activated carbon, and plant-based activated carbon have lower NOx removal efficiencies than anatase TiO2. A lower amount of anatase TiO2 (500 g/m²), compared to the other spraying volumes, yielded the most significant NOx removal efficiency under optimal conditions. Therefore, it is recommended that 500 g/m² of anatase TiO2 should be sprayed onto concrete structures to improve the economic and long-term performance of these structures.
        4,200원
        13.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High concentrations of PM2.5 were generated in new apartments before moving in, and PM2.5 reduction efficiencies using air cleaners and ventilation systems were evaluated. The experimental results for different air cleaner capacities showed that the PM2.5 reduction efficiencies for 46.2 m2, 66 m2, and 105.6 m2 areas were 81.7%, 92.9%, and 92.5%, respectively. Thus, the larger the air cleaning application area, the higher the PM2.5 reduction efficiency. However, there was no difference in the efficiency of overcapacity air cleaners above a certain capacity. The efficiencies of air cleaners located at the living room center, interior wall, and edge were 81.7%, 79.2%, and 75.8%, respectively. There was, therefore, no significant difference in the PM2.5 reduction efficiencies of air cleaners in different locations. Furthermore, the PM2.5 reduction efficiencies at distances of 1 m, 2 m, and 3 m were 81.7%, 81.3%, and 81.7%, respectively. Therefore, there was also no significant difference in efficiency with distance. The PM2.5 concentration decreases rapidly during natural ventilation. Therefore, when the indoor PM2.5 is higher than the outdoor PM2.5, the air cleaner should be used after natural ventilation. The efficiency of PM2.5 reduction using an air supply-type ventilation system in apartments was 35%, which is not high. The simultaneous operation of the ventilation system and kitchen range hood was effective, showing a PM2.5 reduction efficiency of 69.1%. However, a water sprayer was not effective, showing a PM2.5 reduction efficiency of 24.3%. The results of this study suggest that PM2.5 reduction performance should be standardized by evaluating the efficiency of different ventilation systems. Effective usage and maintenance standards for ventilation systems need to be disseminated, and ventilation systems and air cleaners should be used effectively.
        4,000원
        14.
        2020.09 구독 인증기관 무료, 개인회원 유료
        4,000원
        19.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 버스정류장 미세먼지 저감을 위해 설계된 도로시설물의 성능평가 과정 및 결과를 보고한다. 먼저, 유한요 소해석 프로그램인 LS-DYNA를 이용하여 대상 구조물에 대한 충돌해석이 수행되었다. 해석변수로 차량의 속도와 충돌 위치를 고려한 다양한 조건에서의 구조해석이 진행되었다. 대상 시설물의 성능은 이 결과를 이용하여 구조적 성능과 충돌 후 차량의 안전성능이 평가되었다. 해석결과로부터 충돌속도가 증가하고 충돌위치가 전면으로 갈수록 시설물의 구조성능과 차량의 충돌 후 안전성능이 저하되는 것이 콘크리트의 손상량을 통해 확인되었다. 더불어 충돌 후 차량의 거동에 대한 분석을 통해 시설물에 연속되는 연석이 설치되면 차량의 이탈을 방지해 안전성능을 확보하는 것으로 예측되었다. 최종적으로, 대상 시설물은 설계 시 고려된 목표 충돌속도 25km/h보다 더 큰 40km/h까지 충분한 안전성능을 확보하고 있다는 것이 확인되었다.
        4,200원
        20.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Over the years, the concentration of fine dust is gradually increasing, thereby aggravating the seriousness of the situation. Accordingly, this study intends to install a clean road system using low impact development (LID) techniques on the roadside in order to reduce the scattering of dust on roads effectively. This system stores rainwater collected through gutters in rainy weather and sprays water onto the pavement surface to reduce the scattering of road dust. METHODS : The developed clean road system consists of a water tank, controller, rain detection sensor, and solar cell. Based on this, a test-bed construction was used to evaluate its applicability. By applying the developed system, actual applicability was evaluated through total suspended solid (TSS) test and fine dust measurement. TSS test was conducted to measure the reduction rate of scattering dust on the road owing to the water injected by the clean road system. A spray nozzle was used for the TSS test, and a nebulization nozzle was used for the measurement of fine dust. In order to increase the reliability of the test, three measurements were taken each, for normal road as well as unfavorable conditions road that reproduced the construction site. RESULTS : In this study, fine dust concentration measurement and TSS test were conducted to evaluate the practical applicability of the developed clean road system. From the TSS test, it was found that for both general roads and roads depicting bad conditions, the TSS value after the first spray was the highest, and the value after the second spray was sharply reduced, such that most of the re-dispersed dust was washed out after the first spray, and similar TSS value results were obtained after the third spray. Based on this result, the result of fine dust measurement showed similar fine dust reduction effect of 9%-15.9% regardless of the concentration of fine dust in the atmosphere. These results indicate that the concentration of fine dust in the atmosphere does not significantly affect of the degree of reduction in fine dust. CONCLUSIONS : In this study, a clean road system for reducing fine dust on the road was developed and its applicability was evaluated. In a future study, we intend to check the performance of the drainage pavement through performance evaluation of water permeability coefficient test and performance test in the form of drainage pavement. Through this, we intend to evaluate the applicability of the clean road system to which drainage pavement is applied. Moreover, we will develop a clean road system that applies drainage packaging, and analyzes the degree of fine dust reduction according to the spray angle, spray amount, and spray time of the clean road system in order to study the spray system with the optimum amount of fine dust reduction. In addition, in order to reduce fine dust in the winter, when fine dust is mainly generated, it is planned to install heating wires in spray pipes where freezing is expected. Lastly, the black ice prevention effect will be analyzed by mixing a certain amount of sodium chloride when spraying water.
        4,000원
        1 2