This study investigated quality characteristics and functional components of yuzu (Citrus junos Sieb.) pulp produced during yuzu juice processing by manufacturing it according to mixing ratio of yuzu pulp. Results of pH measurement showed that the higher the mixing ratio of yuzu pulp, the lower the pH. The acidity showed a concentration-dependent increase as the mixing ratio of yuzu pulp increased. Total flavonoids, total phenols, and functional flavonoids (narirutin, naringin, hesperidin, neohesperidin) significantly increased with increasing yuzu pulp content (all p<0.05). Growth rate of Bifidobacterium infantis was approximately 5~39% higher in seasoned foods containing yuzu pulp than in commercial foods. Antibacterial effects of seasoned foods against Salmonella typhimurium and Streptococcus mutans were stronger when yuzu pulp content increased. In conclusion, seasoned foods added with yuzu pulp could be utilized in various ways as functional seasoned foods with excellent antioxidant and antibacterial activities.
To utilize textured vegetable protein (TVP) instead of meat in kimchi stew, TVP of different sizes were added to kimchi stew under different cooking conditions. Canned Kimchi stew was prepared by adding processed TVP. Physicochemical quality characteristics and antioxidant activities of the broth, kimchi, and meat (or TVP) were measured. The pH and salinity did not show a significant difference between treatment groups in the broth or kimchi. However, the TVP treatment group showed higher pH and lower salinity than the control group. There was no significant difference in color between control group and TVP-treated groups. In terms of texture, the control group had the lowest hardness, gumminess, and chewiness, followed by TVP-1 and TVP-2 manufactured after pre-cooking, which showed lower hardness, gumminess, and chewiness. The smaller the size of the TVP, the lower the hardness, gumminess, and chewiness. Results of shear force were consistent with those of hardness. Contents of flavonoid and polyphenol compounds as antioxidant components did not increase or decrease with the addition of TVP. There were no significant differences in antioxidant activities among experimental groups.
To determine the differences in food quality between fish fed a low fish meal diet containing black soldier fly (Hermetia illucens) instead of fish meal and those fed a general fish meal diet, we analyzed the approximate components, mineral content, amino acid composition, fatty acid composition, color, and texture of Flounder (Paralichthys olivaceus). The analysis of approximate components showed no difference between the two samples, except for moisture content. Mineral contents were measured in the order of K, P, Na, and Mg in both samples, with no difference except for phosphorus (P). A total of 16 amino acids were detected in both samples, with no significant differences in their composition. Additionally, 17 types of free amino acids were identified, with no significant differences between the two samples. The fatty acid composition consisted of 13 fatty acids, with palmitic acid, DHA, and oleic acid being the most prominent, although slight differences in content were observed. The color and texture also showed no differences between the two samples. Overall, there were no significant differences in chemical components or physical characteristics, so it was judged to be insignificant in terms of food science.
군산과 고성(경남)의 벼(Oryza sativa)와 무안과 화순의 물억새(Miscanthus sacchariflorus)로부터 2012년 9월과 2013년 3월 사이에 Chilo속(풀 명나방과)에 속한 월동유충들을 각각 채집하였다. 시토크롬 c 산화효소 1 유전자의 부분염기서열과 성충 생식기 형태에 근거하여 벼에서 채집된 유충 은 이화명나방[C. suppressalis (Walker, 1863)]으로, 물억새의 유충은 나도이화명나방[C. niponella (Thunberg, 1788) (synonym, C. hyrax Błeszyński, 1965)]으로 동정되었다. 다른 여러 지역에서 이화명나방 성페로몬트랩에 포획된 성충 중 종 동정에 적용된 개체들은 모두 대상종인 이화명나방으 로 동정되었다. 두 종은 말령태로 월동하였다. 월동유충들을 채집한 후 수원지방의 야외조건에 두었을 때, 5~6월에 용화하였고, 14~88%의 유충 생존 율을 보였다. 3월 중 고성(경남)에서 채집된 이화명나방 유충과 1월 말에 화순에서 채집된 나도이화명나방 유충들은 채집 당시 휴면이 종료되어 발육을 진행하고 있는 것으로 추정되었다. 두 종이 분리되지 않은 채 인위적으로 만들어진 실내집단의 갓부화 유충을 수원 야외에서 사육하였을 때, 6월 하순 부터 9월 사이에 발육을 시작하는 유충들이 월동유충이 생성되는 휴면에 유도되었다. 6월 하순부터 7월 하순 사이에 사육을 시작한 집단들로부터는 비월동태와 월동태 유충들이 같이 발생하였다.
Yuzu (Citrus junos) undergoes traditional processing to create preserved yuzu with a sugar content of 50%. This study aimed to produce low-sugar yuzu syrup using artificial or natural sweeteners instead of sugar. Among artificial sweeteners, maltitol showed minimal browning and lack of deposition at high temperatures. The addition of xanthan gum (0.2%) and carboxymethyl cellulose (0.2%) resolved the issue of layer separation and viscosity decrease of yuzu syrup. Alternatively, grain syrup, a natural sweetener, improved viscosity and homogeneity without the additives. Yuzu syrups were developed using yuzu juice and preserved yuzu, with maltitol (20~40%) or grain syrup (50~70%) as the sweetener. Yuzu syrups containing 35% maltitol (M35) or 55% grain syrup (G55) had less than 5% and 10% free sugar, respectively. These syrups exhibited taste patterns similar to commercial yuzu syrup in analysis using an electronic tongue. Furthermore, M35 and G55 contained yuzu flavonoids at concentrations of 19.82 mg/g and 24.09 mg/g, respectively. Antioxidant activity (DPPH, ABTS radical scavenging) of M35 and G55 was equivalent to 10.55, 17.59 mg/100 g of Vitamin C and 97.39, 33.92 mg/100 g of Vitamin C, respectively. Consequently, M35 and G55 offer promising alternatives to preserved yuzu, providing low-sugar yuzu syrups enriched with functional ingredients.
With changing dietary trends, active research is underway to substitute rice flour for wheat flour, commonly added to various processed foods. This study aimed to explore whether Baromi2, a floury rice incorporated in the production of Sujebi, can effectively replace wheat flour at appropriate levels based on its physicochemical and cooking characteristics. Baromi2 was categorized based on particle size (100, 140, and 200 mesh) and added in proportions of 10% and 20% relative to the weight of wheat flour. As the amount of Baromi2 increased, the protein and lipid content of the mixed flour also increased. Simultaneously, the dough strength decreased as the noodles became thinner, reducing hardness, gumminess, and chewiness. Additionally, a decrease in particle size increased peak viscosity and breakdown viscosity, whereas setback viscosity decreased. When Baromi2 was added at a 10% ratio, it displayed a low cooking loss, demonstrating desirable characteristics for Sujebi and was considered the most suitable proportion for production. These results provide foundational data for developing various rice-processed products using Baromi2, contributing to expanding consumption and enhancing utility.
This study evaluated the physicochemical characteristics of wheat-flour mixed powders and cooking properties of Sujebi based on the addition of ‘Baromi2’ rice flours for increased expansion of rice consumption. The addition rates at which a roll surface sheet was formed were selected as 0, 10, 20, 30, and 50% based on preliminary experiments with 0-90% addition rates of ‘Baromi2’. Results of physicochemical characterization showed that increasing the addition ratio of ‘Baromi2’ rice flour resulted in increased crude ash and crude fat levels, however crude protein and total starch decreased. The L*-value (lightness) increased with increasing addition ratio of ‘Baromi2’ rice flour; in contrast, a*-value (redness), b*-value (yellowness), and particle size decreased. Results of RVA showed that increasing the addition ratio of ‘Baromi2’ rice flour increased the peak, breakdown, and setback. Regarding textural properties, hardness and chewiness values were significantly reduced with increasing addition ratios of ‘Baromi2’ rice flour. Based on these results, a blending ratio of 20% or less of ‘Baromi2’ is considered suitable for producing Sujebi, and this result serves as basic data for the development of processed rice flour products using ‘Baromi2’.
식용곤충인 갈색거저리 유충이 식품 대체원료로써 식육에 대한 대체 가능성을 타진하고자 갈색거저리 유충 분말을 대체하지 않은 제품을 대조구로 설정하고 1%, 2%, 3% 비율로 대체한 유화소시지를 처리구로 하여 4±1℃에서 1, 8, 15, 22, 29일간 저장하면서 이화학적 특성과 관능적 특성 변화를 측정하였다. 갈색거저리 유충 분말을 첨가한 처리구의 pH는 대조구보다 증가하였고, 보수성(WHC)은 저장기간에 따라 대조구와 처리구 간 유의적인 차이는 크게 나타나지 않았으나, 대체량이 많을수록 보수성이 더 우수하였다(p<0.05). 휘발성 염기태질소(VBN), 지방산패도(TBARS) 는 대조구보다 감소하였으며, 관능검사의 경우 대조구와 유의적 차이가 나타나지 않았다(p<0.05). 따라서, 처리구가 대조구보다 우수한 품질과 저장성을 가지고 있었으며, 기호적인 측면에서도 뒤처지지 않아서 갈색거저리 유충 분말로 식육을 대체하는 것이 가능하다고 판단되어 식용곤충을 식품 대체원료로 제품화하였을 때, 식용곤충에 대한 거부감을 완화하고 소비자들에게 있어 긍정적인 인식의 변화를 이끌어낼 수 있는 기초자료를 제시할 수 있었다.
To produce super sweet corn sikhye, substituted for sweetener, the ratio of rice and super sweet corn was adjusted and processed with complex enzymes during saccharification, and their physicochemical and sensory properties were analyzed. The soluble solid content of the control and Corn-5 showed significantly high content at 13.50 °Brix, and the reducing sugar content of Corn-5 showed the highest content at 9.45%. The control showed the lowest free sugar content among all the experimental groups, excluding maltose content. In the enzyme-treated corn sikhye group, as the amount of super sweet corn increased, the content of sucrose decreased and the contents of glucose and fructose increased. The content of ascorbic acid and polyphenol compounds increased as the amount of super sweet corn increased. DPPH and ABTS radical scavenging abilities increased with increasing ratio of super sweet corn and enzyme treatment compared to the control. In the case of sensory evaluation, Corn-3, which substituted 30% of super sweet corn for rice and treated with enzymes, showed higher evaluations in taste, sweetness, and overall preference than those of the control.
To improve usability of super sweet corn, extracts were prepared with hydrolytic enzyme and changes in physicochemical and antioxidant properties were analyzed. Soluble solids and reducing sugars contents were higher in all enzyme treatment groups than in the control. When enzyme treatment time increased, contents of soluble solids and reducing sugars were also increased. There was no significant difference in lightness between treatment groups, with redness showing the highest value in the control and yellowness showing the highest value in the invertase treatment group. Free sugar content in the control was the lowest. However free sugar content in the enzyme combination treatment group was increased by more than four times compared to that in the control. Contents of ascorbic acid, flavonoids and polyphenols were higher in the enzyme treatment group than in the control. In particular, the enzyme combination treatment group showed the highest content. DPPH and ABTS radical scavenging abilities were significantly higher in all enzyme treatment groups than in the control. Radical scavenging abilities of cellulase treatment group and enzyme combination treatment group showed high activity. The activity increased when enzyme treatment time increased. The combined enzyme treatment method for super sweet corn was suitable for food processing.
This research aimed to examine the effects of grapefruit seed extract (GSE) at various concentrations on the microbial safety and physicochemical characteristics of onion puree (0.01~0.1%). The onion puree was kept at 4℃ for 14 days. The results of the study indicated that the addition of GSE did not cause any significant changes in the sample’s brix degree and viscosity in onion puree (p<0.05). However, as the concentration of GSE increased, the pH level decreased. On the other hand, as GSE was added, the lightness of the onion puree increased, while the redness and yellowness decreased. Compared to pure onion puree, the GSE-incorporated onion puree had higher levels of total flavonoid and total polyphenol content, indicating that it helps to maintain antioxidant activities. Based on the microbial safety test, aerobic bacteria, yeast, and mold were absent until day 14 of storage. In conclusion, the study suggests that the addition of GSE to onion puree increases its antioxidant activity and shelf-life.
Rice ratooning is the cultural practice that easily produces secondary rice from the stubble left behind after harvesting the main crop. ‘Daol’ is an extremely early growing rice variety. Planting this variety early allows for an additional ratoon harvest after the primary rice harvest. The plant growth and yield of ratoon rice were very low compared to those of main rice. Protein, amylose content, and head rice rate were higher in ratoon rice than in main rice. The distribution by the rice flour particle size of main and ratoon rice was similar. The damaged starch content in ratoon rice was relatively high at 6.1%. Ratoon rice required a longer time and higher temperature for pasting than main rice. Compared to the original rice, peak viscosity (PV), hot paste viscosity (HPV), cool paste viscosity (CPV), and breakdown (BD) were very low, and setback (SB) was high. As a result of analyzing the gelatinization properties of main and ratoon rice using differential calorimetry, it was found that the onset (To), peak (Tp), and conclusion (Tc) of ratoon rice starch were processed at a lower temperature than those of main rice. The gelatinization enthalpy of both samples was similar. The distribution of amylopectin short chains in ratoon rice was higher than that in main rice.
This study aimed to apply rice flour Baromi 2 (B2) varieties developed by the Rural Development Administration in low-sugar baguette products. To achieve this, baguettes were produced using B2 at 10%, 20%, and 30% levels. As the content of B2 increased, the mixing time decreased, and the dough became sticky. Additionally, the dough fermentation ability was reduced. The finished products showed no significant difference in the external structure with varying B2 contents. However, the crust color containing B2 was darker than that of the control. In color value, the L* value decreased as the amount of added B2 increased, while the a* value and b* value increased. Furthermore, the sensory evaluation revealed that baguettes with a higher amount of B2 had a softer crumb and a crunchy crust, and with 20% substituted for B2, the sample obtained the highest score. From these results, it has been determined that B2 can substitute for up to 20% of wheat flour in bakery products.
This study compared the physicochemical properties of soybean curd residue and black soybean curd residue produced by hot air-drying and freeze-drying. Regardless of drying method, the crude protein, crude ash, crude fiber contents, pH, L, a, b color values and water soluble index were higher in soybean curd residue, whereas total polyphenol contents and antioxidant activity were higher in black soybean curd residue. Significant differences in water absorption index, oil absorption capacity and emulsion activity were observed between soybean curd residue and black soybean curd residue in freeze-drying. On the other hand, the emulsion stability was not significant difference in both hot-air drying and freezedrying. The crude protein and crude fiber contents of soybean curd residue were not significant difference between hot-air drying and freeze-drying. Freeze-drying resulted in higher crude ash contents, pH, water absorption index, water soluble index, oil absorption capacity, emulsion activity and emulsion stability than hot-air drying. Hot-air drying have caused significantly higher water contents, water activity, total polyphenol contents and antioxidant activity in soybean curd residue than freeze-drying. In conclusion, soybean type and drying methods affect the physicochemical and quality characteristics of soybean curd residue, which could be important factors in the manufacture of processed foods.
We conducted an on-site application study at the livestock cooperative fertilizer plant to compare the composting period, temperature change, moisture content, and chemical properties between livestock manure compost using sawdust as a moisture regulator with those using spent oyster mushroom substrate. The composting period, moisture content, and fertilizer composition of compost containing spent oyster mushroom substrate did not differ from that of conventional compost mixed with sawdust after the first and second fermentation and post-maturation stages, it was suitable as a material for manufacturing livestock manure compost. The spent oyster mushroom substrate also lower the production cost of livestock manure compost by replacing the more expensive sawdust. The developed technology is expected to contribute towards the utilization of by-products of the oyster mushroom harvest while simultaneously producing high quality livestock manure compost.
Physicochemical properties and storage stability of plant-based alternative meat prepared with low-fat soybean powder (LPAM) treated by supercritical-CO2 and those of full-fat soybean powder (FPAM) were compared. Ash and crude protein contents were higher in LPAM than in FRAM. Water absorption capacity and oil absorption capacity were significantly higher in LPAM than in FPAM. Water binding capacity was higher in LPAM than in FPAM during a 20 days storage period at 5℃ and pH was significantly lower in LPAM than in FPAM after a 5~10 days storage period. Hardness, gumminess and chewiness significantly increased with the increase in the storage period, and the three were significantly higher in LPAM than in FPAM after 10 days and 20 days of storage. The acid value showed no remarkable difference according to the storage period in LPAM; however, it was significantly higher in FPAM than in LPAM after 20 days of storage. The peroxide value and TBA value were significantly increased according to the storage period, and were significantly lower iin LPAM than in FPAM during all the storage periods. Therefore, the use of low-fat soybean powder may be effective in improving oxidative stability during storage in the production of plant-based alternative meat.
FT-IR, GC/MS, and ATR-FT-IR analyses were performed to confirm the physicochemical characteristics of saw palmetto fruit (SPF) extract. FT-IR analysis of the standard product showed that the band corresponding to the carbonyl bond of free fatty acid was stronger than the band of acyl-glyceride. Sample E was identified as having the same trend as the standard sample. Fatty acid composition analysis revealed that the main fatty acids in the standard sample were lauric acid and oleic acid. The content of lauric acid ranged from approximately 30% to 38% in samples B, C, D, and E, while the content of oleic acid ranged from approximately 29% to 34%. The GC/MS analysis confirmed that the standard SPF extract consisted of fatty acids and fatty acid ethyl esters. Sample E demonstrated a similar pattern to the standard samples in terms of oleic acid, lauric acid, and fatty acid esters. ATR-FT-IR analysis indicated that only sample E was predicted to contain 100% saw palmetto extract. Therefore, these study findings can be considered fundamental data for analyzing the physicochemical characteristics of the composition of SPF extract.
A beverage was developed using the Abeliophyllum distichum leaf (AL). The beverage was prepared by adding it to apple juice by concentration, and physicochemical quality, antioxidant activities, and sensory evaluation were measured. Soluble solid and reducing sugar content of the control were 12.57 °Brix and 11.40%, respectively, and there was no difference from the group with addition of the AL extract. However, pH was slightly increased upon addition of AL extract. Lightness and yellowness increased when AL extract was added. Verbascoside content was not detected in the control, but it increased as the concentration of AL extract increased. The contents of ascorbic acid and flavonoids were 5.38 and 20.42 mg%, respectively, and there was no significant difference between the groups. However, the content of polyphenols increased as the concentration of the AL extract increased. DPPH radical and metal ion scavenging activity were increased by addition of the AL extract, but there was no difference in the ABTS radical scavenging activity. As a result of the sensory evaluation, there was no difference from the control even wihen the AL extract was added; thus, it was considered that there was no problem with the degree of acceptability when added within about 300 ppm.
The purpose of this study was to analyze the physicochemical properties by mixing ratio of soybean and peanut protein to secure basic data for developing alternative protein foods. As a result of analyzing the protein molecular weight pattern, it was confirmed that the specific molecular weight was affected by the soybean and peanut protein mixture. The content of glutamic acid, aspartic acid, arginine, glycine, serine, alanine, and tyrosine among nonessential amino acids was higher as the mixing ratio of peanut protein to soy protein was higher. However, the higher the peanut protein mixing ratio, the lower the water absorption capacity. Based on the results of this study, further studies, such as selecting soybean and peanut cultivars for determining the optimal mixing ratio of soybean and peanut protein and processing methods to improve physical properties, are necessary