검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 429

        201.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        먹는 물 내에 존재하는 발암원인으로 의심되는 유기화학물질을 재래식 정수처리방법으로 제거한다는 것은 불가능하다. 이들을 AOP산화 & M/F membrane 혼성공정법을 이용하여 목적하는 처리수로 처리하고자 지하수를 반응조에 유효용량으로 유입하고 유기화학물질을 인위적으로 투입 혼합하여 충분히 희석시키고 이것을 효율적으로 처리하기 위해 최적운전조건을 도출하였다. 유기 화학물질 중 VOCs는 페놀과 톨루엔을 그리고 농약은 파라치온, 다이아지논과 카바닐을 대상으로 조사하였다. 실험은 각각 분류별 단일용액과 혼합용액으로 수행하였으며, 실험결과 충분한 분해 및 제거를 위한 운전조건은 H2O2는 150 mL로 정량 주입하고, pH는 5.5~6.0, 온도는 12~16℃로 일정하게 유지하고, 용존오존량은 5.0 mg/L이상, 반응시간은 30~40분이 최적 조건이었으며 그리고 같은 반응기 내 분리막의 사용은 0.45 μm 공경크기의 M/F membrane을 이용하여 대량의 음용수를 얻기 위한 결정이었다.
        4,500원
        203.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The odorants from wastewater sludge treated with four different chemical oxidants, i. e., potassium ferrate, sodium hypochlorite, sodium permanganate, and calcium nitrate, were analyzed. The release of odorants from the treated sludge was not completely eliminated, only retarded, possibly due to the low one time doseof oxidants. In a comparison of the concentration profiles of methyl mercaptan and dimethyl sulfide, calcium nitrate was the best of the four different oxidants at reducing their emission. For methyl mercaptan, calcium nitrate gave the best result, while for dimethyl sulfide, potassium permanganate was found to be the best oxidant. From this study, it was found that the oxidation-reduction potential (ORP) would be an easy and inexpensive parameter for the monitoring of the release of offensive odors.
        4,000원
        204.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The acenaphthene(ACE) or acenaphthylene(ACEL) is one of the most frequently found compound in polycyclic aromatic hydrocarbon (PAH)-contaminated soil. In this study, we make 10mg/L ACE or ACEL in ethanol which is the model washing solvent for contaminated soil. This was followed by Fenton treatment in which 0.2 or 0.3mL of 30% H2O2 and 0.2 ml of 0.5 M Fe2+ were added. The results showed more than 88 or 99% of ACE or ACEL removal efficiency, respectively. Additionally, we employed GC-MS to identify the main oxidation product generated by the optimized Fenton oxidation [i.e., ACE or ACEL degraded in to 21, 34 % 1,8-naphthalic anhydride(NAPAN), repectively]. It is expected that biodegradability of NAPAN is enhanced because NAPAN has three oxygens compared with ACE and ACEL. Therefore the results suggest that the hybrid treatment system (i.e., ethanol washing -Fenton oxidation treatment) can be effectively applied to remove ACE or ACEL from soil..
        4,000원
        205.
        2007.02 구독 인증기관 무료, 개인회원 유료
        Oxidation characteristics of benzene as a VOC was investigated using a fixed bed reactor system over copper base catalysts. The copper base catalysts were made by using copper nitrate reagent and various support materials such as γ-Al2O3, TiO2, and zeolite. The parametric tests were conducted at the reaction temperature range of 200~500℃, benzene concentration of 1,000~2,000 ppm, and space velocity range of 5,000~20,000 hr-1. The property analyses such as BET, SEM, XRD and the conversions of catalytic oxidation of VOC were examined. XRD analysis on copper catalysts showed CuO crystal forms and the peak intensity of CuO increased as the impregnation weight of copper grew. The experimental results showed that the conversion was increased with decreasing space velocity. It was also found that Cu/γ-Al2O3+TiO2 catalyst showed the highest activity for the oxidation of benzene and 15% metal loading was the optimum impregnation level.
        4,800원
        210.
        2006.09 구독 인증기관·개인회원 무료
        [ ] powders for lithium ion batteries were synthesized from two separate raw material pairs of LiOH/MnO and . The powders prepared at 780 and and their difference of electrochemical properties were investigated. Both powders calcined at 780 and were composed of a single-phase spinel structure but those treated at showed a lower intensity ratio of to , a slightly larger lattice parameter, and an increased discharge capacity by 10% under voltage range. The XPS study on the oxidation states of manganese repealed that powders made from LiOH/MnO had less ion and gave better battery performances than those from .
        211.
        2006.09 구독 인증기관·개인회원 무료
        The oxidation of (W,Mo) powders has been investigated at 400, 500 and for 12.0 hours in air. It was shown that the low temperature oxidation resistance of (W,Mo) was worse than that of , and they showed great changes in mass, volume and colour. Especialy at , the amount of volume expansion of (W,Mo) was as high as about times and color changed from black to yellow after 4.0h with , , (W,Mo) and amorphous as main reaction products. The mass gain and oxidation rate were relatively slower at and than that at .
        212.
        2006.09 구독 인증기관·개인회원 무료
        [ ] was coated with , MgO and respectively by sol-gel method and cured at 900 and . The coated oxides did not react with at but reacted with it to form at . The specimen coated with at formed a dense protecting layer and showed the best oxidation resistance at in air. However, the dense protecting layers did not form in and MgO coated specimens cured even at . MgO coated specimen showed the worst improvement in the oxidation resistance because the reactivity of MgO with was highest. On the other hand, the electrical conductivities were measured in MgO and coated specimens to have TiCx but could not be measured in the coated ones because of the nonconductive dense protected layers.
        215.
        2006.09 구독 인증기관·개인회원 무료
        In order to clarify the wear resistance as cutting tools, the effect of oxygen addition on oxidation behavior of the β-Si3N4 ceramics with 5 mass% Y2O3 and 2 or 4 mass% Al2O3 was investigated by performing oxidation tests in air at 1300° to 1400°C and cutting performance tests. From test results, we could conclude that the mechanical properties of β-Si3N4 ceramics depending on oxygen introduction are much effective on cutting performance improvements of β-Si3N4 ceramics.
        216.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphite has hexagonal closed packing structure with two bonding characteristics of van der Waals bonding between the carbon layers at c axis, and covalent bonding in the carbon layer at a and b axis. Graphite has high tolerant to the extreme conditions of high temperature and neutron irradiations rather than any other materials of metals and ceramics. However, carbon elements easily react with oxygen at as low as 400C. Considering the increasing production of today of hydrogen and electricity with a nuclear reactor, study of oxidation characteristics of graphite is very important, and essential for the life evaluation and design of the nuclear reactor. Since the oxidation behaviors of graphite are dependent on the shapes of testing specimen, critical care is required for evaluation of nuclear reactor graphite materials. In this work, oxidation rate and amounts of the isotropic graphite (IG-110, Toyo Carbon), currently being used for the Koran nuclear reactor, are investigated at various temperature. Oxidation process or principle of graphite was figured out by measuring the oxidation rate, and relation between oxidation rate and sample shape are understood. In the oxidation process, shape effect of volume, surface area, and surface to volume ratio are investigated at 600℃, based on the sample of ASTM C 1179-91.
        4,000원
        217.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Methanol and formaldehyde were produced directly by the partial oxidation of methane over mixed oxide catalysts. The catalysts were composed of Mo and Bi with late-transition metals, such as Mn, Fe, and Co. The reaction was carried out at 450℃, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by O2-TPD and BET apparatus. Among the catalysts used, the catalyst composed of 1:1:2.5 molar ratio of Mo:Bi:Mn showed the best methane conversion and methanol selectivity. The change in ratio of methane to oxygen affected at the conversion and selectivity, and the most proper ratio was 10:1.5. Methane conversion, methanol and formaldehyde selectivities increased with the surface areas of the catalysts. From the O2-TPD result, it was found that the oxygen species responsible for this reaction might be the lattice oxygen species desorbed at high temperature around 800℃.
        4,000원
        218.
        2006.04 구독 인증기관·개인회원 무료
        WC-TiC-TaC binderless cemented carbide was oxidized under low partial pressure of oxygen (50ppm) at 873K for 1 to 20 h. Surface roughness was measured using atomic force microscope, and effect of TiC amount on oxidation behavior of the carbide was investigated. WC phase was oxidized more easily than WC-TiC-TaC solid solution phase. With an increase in TiC amount, WC-TiC-TaC phase increased and the oxidation resistance of the carbide increased.
        219.
        2006.04 구독 인증기관·개인회원 무료
        The effect of TiC content on oxidation behavior of the sintered WC-TiC-TaC alloys with 2 mass% TaC and different TiC amounts of 3-45 mass% was investigated through oxidation tests in air at 973K. As a result of the tests, it was revealed that with increasing TiC content in the alloys, mass changes caused by oxidation and thickness of the scale decreased. Thus, it is considered that the main component of the scales changed gradually from to with increasing TiC content in the alloys, and oxygen diffusion through the scale to the alloys was inhibited gradually.
        220.
        2006.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        염산매질에서 산화/환원제를 사용하여 Pu 산화수를 조절한 후, UV-Visible-Near IR 분광기를 이용하여 Pu(III, IV, V, VI) 산화수에 대한 흡수스펙트럼을 측정하여 그 분광학적 특성을 고찰하였다. Pu(III)으로 조절하기 위하여 환원제인 HCl를 사용하였으며, Pu(IV)와 Pu(VI)로 조절하기 위하여 산화제인 및 를 각각 사용하였다. 또한 Pu(VI)로 조절된 용액에 환원제인 HCl를 사용하여 Pu(V)로 조절하였다. Pu(III)와 Pu(IV)의 대표적인 흡수피크는 470 nm 및 600 nm에서 각각 관찰되었고, Pu(VI)와 Pu(V)의 특성피크는 830 nm 및 1135nm에서 각각 관찰되었다. Pu(III, IV, VI) 산화상태의 시간 경과에 따른 흡수스펙트럼 변화는 관찰되지 않았으나 Pu(V)의 경우 매우 불안정하여 생성되자 마자 Pu(III)로 변화되었다.
        4,000원