This study aimed to identify and characterize lactic acid bacteria strains with antimicrobial activity against Proteus mirabilis, a gram-negative bacterium associated with Parkinson’s disease, Crohn’s disease, and nosocomial infections. Among the 987 lactic acid bacteria strains isolated from various sources, strain no. CHK903 showed high antimicrobial activity against P. mirabilis. Phylogenetic tree analysis based on the 16S rRNA gene and scanning electron microscope analysis identified the selected strain as the rod-shaped Weissella cibaria. The culture supernatants of W. cibaria CHK903 showed antimicrobial activity against some pathogens. Two antimicrobial compounds with molecular weights 189 and 365 Da were partially purified from the culture supernatants of W. cibaria CHK903 using Biogel P2 gel permeation column chromatography. The culture supernatants of W. cibaria CHK903 also showed significant antibiofilm properties, inhibiting biofilm formation by 90% and removing pre-formed biofilms by 60%. These findings suggest the potential therapeutic use of W. cibaria CHK903 as a natural antimicrobial against P. mirabilis-related infections.
본 연구의 목적은 포졸란의 항생제 내성균과 장내 유해 미생물 억제에 관한 체외배양 항균 활성을 조사하는 것이었다. 대조군 (CON, 포졸란 무첨가 대조군)과 DP0.3 (증류수와 포졸란 분말 0.3%를 혼합하여 제조한 배지군), DP0.5 (증류수와 포졸란 분말 0.5%를 혼합하여 제조한 배지군), PE (포졸란 분말 추출물을 이용하여 제조한 배지군)으로 구분하였다. Lacctobacillus casei 균수는 CON과 비교할 때 DP0.3 처리군에서 유의하게 높았으나 (P<0.05) 기타 처리구 사이의 차이는 없었다. Clostridium butyricum, E. coli, Salmonella typhimurium 균수는 CON과 비교할 때 포졸란 처리구가 유의하게 낮았다 (P<0.05). Clostridium butyricum, Salmonella typhimurium 균수는 DP0.3, DP0.5와 PE 사이, E. coli 균수는 DP0.5와 PE 사이의 유의차가 있었다 (P<0.05). MRSA와 VRE의 균수는 CON과 비교할 때 포졸란 처리구가 유의하게 낮았다 (P<0.05). MRSA 균수는 DP0.5와 DP0.3, PE 사이의 차이가 있었고, VRE 균수는 PE> DP0.3> DP0.5> CON 처리구 순서로 유의하게 높았다 (P<0.05). 이와 같은 결과를 통해 포졸란의 항생제 내성균 및 장내 유해 미생물에 대한 항균활성이 확인됨에 따라 가축용 천연항균제, 보조사료 규산염제로써의 활용이 가능할 것으로 보인다.
Indoor air contaminated with various pollutants commonly poses a risk to human health, and the need for installing air purifiers has been increasing. However, in commercial air purifiers pollutants-removal efficiency and durability are generally low. Since silver nano-composites are known to have catalytic oxidation and antibacterial capacities, it was anticipated to be applicable for indoor air purifiers. In this study, silver nano-composites were applied to granular activated carbon and scrubber solutions to treat a mixture of three air pollutants including toluene, formaldehyde, and bioaerosol. In the activated carbon deposited with silver nano-particles, the specific surface area decreased, resulting in a 10% loss of adsorption capacity for toluene. However, the removal efficacy of formaldehyde and bioaerosol increased by 10% due to the catalytic oxidation and antibacterial capacities. In the scrubber operation with silver nano-particles, the removal rates of formaldehyde and bioaerosol improved by 20%, while toluene removal was not observed. When the activated carbon column and the scrubber was connected in series, toluene was mainly removed by the activated carbon, and the removal rates of formaldehyde and bioaerosol increased in the presence of silver nano-particles. Consequently, for the improvement of indoor air quality, it is deemed appropriate to apply silver nano-material to indoor environments contaminated with pollutant mixtures.
In order to establish symbiotic host-bacterial relationships, symbionts in insects evolved a mechanism to overcome host immune responses. Here we provide the resistance of symbiotic bacteria on the insect immune system. As a result, through the transposon mutagenesis, we found a salivary gland (SG) susceptible mutant. The disrupted gene was identified as nlpB involved in lipoprotein synthesis. The nlpB, bla double deletion mutant was sensitive to SG like nlpB-Tn5 inserted mutant. This mutant increases outer membrane permeability. It provides an explanation for SG susceptibility, because the antimicrobial peptide in SG would be able to translocate across the outer membrane more easily than in the wild type. These results indicate that nlpB and bla are likely to be important factors in terms of determining resistance against SG of Riptortus that is connected with the successful colonization of the Riptortus midgut.
We attempted to investigate antibacterial and proteolytic activities of bacteria isolated from three ethnic fermented seafoods in the east coast of South Korea, gajami sikhae, squid jeotgal, and fermented jinuari (Grateloupia filicina). Bacillus cereus ATCC 14579, Listeria monocytogenes ATCC 15313, Staphylococcus aureus KCTC 1916, Escherichia coli O157:H7 ATCC 43895, and Salmonella enterica serovar Typhimurium ATCC 4931 were selected to determine the antibacterial activity of the bacterial isolates. Among 233 isolates from the three foods, 36 isolates (15.5%) showed antibacterial activity against B. cereus ATCC 14579, the highest incidence of inhibition, followed by S. aureus KCTC 1916 (7.7%) and L. monocytogenes ATCC 15313 (6.0%). However, only five and three strains among the isolates exhibited inhibitory activity against Gram-negative indicators, E. coli ATCC 43895 and Sal. enterica ATCC 4931, respectively. The proteolytic activity of the isolates was determined via hydrolysis of skim milk after 24, 48, and 72 h incubation. After 72 h incubation, 72 out of 233 isolates (30.9%) showed proteolytic activity, and the isolates of fermented jinuari exhibited the highest incidence of proteolytic activity (60%, 36 isolates). These results suggest that ethnic fermented seafoods in the east coast of South Korea might be a promising source of bacterial strains producing antibacterial and proteolytic compounds.
Recently, there is a growing interest of consumers in natural products thus a large number of natural preservatives have been studied as food additives. Among those natural preservatives, rosemary extract are commonly used by the food industry to extend the shelf life of several products. Nevertheless, the incorporation of the rosemary extract in food matrix is highly limited due to the low water solubility and poor chemical stability of constituents of rosemary extract. In this context, it is needed to find a way that can improve the water solubility to incorporate rosemary extract into aqueous system like foods. Hence, in this study we added surfactants that have a relatively high hydrophilic-liphophilic balance number into rosemary extract solution to increase the water solubility of rosemary extract and then investigated the microbial activities of rosemary extract with surfactants. Tween 20, decaglycerol monooleate, decaglycerol laurate and decaglycerol myristate were used in a range 0.1~4% and rosemary-surfactant solution was prepared by dissolving rosemary in surfactant added phosphate buffer (pH 7) as much as extract can be dissolved. Water solubility of rosemary-surfactant solution were examined by observance of the UV-vis spectra. The antimicrobial effects rosemary-surfactant solution on B.subtilis were also examined by paper disc diffusion method. Rosemary extract showed poor solubility in normal phosphate buffer but its water solubility was highly increased when surfactant was added. This tendency was lasted at all types of surfactant. This is because of amphipathic property of surfactant. Antimicrobial effect to B.subtilis was observed when a relatively lower concentration of surfactants were used, however, not in high concentrations. This result might be attributed to the formation of surfactant micelles containing rosemary extract when a relatively higher concentration of surfactants were used. The information presented may be useful for the development of a new rosemary-loaded delivery systems.
The effects of antioxidant measured by DPPH radical scavenger activity, the extract of harvestry in July shown highest activity(91.8±0.01%). The all extracts of 4 parts(leaf, f1ower, root, branch) of harvestry in July were shown better radical scavenger activity than BHT(89.2±0.01%). The antibacteria activity of Agrimonia pilosa extracts was determined by using a paper disc method against bacteria, the methanol extracts(70%) showed the most active antibacteria activity against 12 kinds of harmful microorganisms. The methanol extracts(70%) showed the highest antibacterial activity against S. aureus and B. subtilis. In addition, the minimum inhibitory concentration(MIC) of methanol extracts(70%) against S. aureus, B. subtilis, C. diphtheriae, S. mutans, and S. epidermidis were revealed 0.625~10mg/mL. As a result, antibacteria activity in methanol(70%) extract of Agrimonia pilosa shown higher gram positive bacteria than gram negative bacteria.
Synthesis of nanosilver particles were obtained by chemical reduction of silver nitrate and capping agent. The solution containing nanoparticles were coated on polyvinylidene fluoride (PVDF) hollow fiber membranes which the membranes were measured water permeation flux and antibacterial activities. The resonance peak of the Ag/PVA core shell nanoparticle indicated at 430 nm in the UV-visible spectra. The Ag/PVA coated PVDF membrane exhibited excellent antibacterial performance over 60 days, and water permeation flux (LMH) was observed from 700 to 1400.
Rice can be the contaminating with soil-borne bacteria. Furthermore, the contaminated bacteria can be grown during immersion process for produce wet-milled rice flour. Therefore, disinfectants can be added during the immersion process. Antibacterial activities of the natural disinfectant, fermented rice spent water (FRSW), and the chemical disinfectants, chlorine dioxide (CD) and sodium benzoate (SB), were respectively determined when added in pure cultures of target bacteria such as Salmonella typhimurium, Escherichia coli, and Bacillus cereus or when added to immersion water in the immersion process. In addition, rinsing effects for removing bacteria were determined when rice was rinsed with water before and after the immersion process. Antibacterial activities were rapidly increased as increasing amounts of the disinfectants are added to the pure cultures of the target bacteria. Antibacterial activity of CD was the most effective among the three tested disinfectants when added to the pure cultures of the target bacteria, respectively. Those of the same disinfectants were increased when they were increasingly added to the immersion water. However those of the disinfectants were less effective when added to the immersion water. On the other hand, rinsing effects for removing bacteria were the most effective when rice was rinsed only with water without the immersion process. Collectively, rinsing rice with water only was more effective than using disinfectants in the immersion water during rice flour production.
In this study, a medicinal herbal plant, Cinnamomum cassia, was extracted by three different methods using water, methanol, or ethanol. For anti-helicobacter activity screening, inhibitory zone tests as an in vitro assay were performed respectively with the extracting compounds. As the result of inhibitory zone test, Cinnamomum cassia extract exhibited strong anti-helicobacter activity. In addition, we performed a comparison of the antibacterial activities according to the extracting methods of Cinnamomum cassia against Helicobacter pylori. The 70% ethanol-extracted compound exhibited stronger anti-helicobacter activity than the compounds extracted with water or methanol. These results indicate that it can be used for treatment against H. pylori infection and protected against H. pylori-induced pathology using 70% ethanol-extracted Cinnamomum cassia.
In recent days, there is much interest in the biocidal activity of silver since silver is known to be safe and effective as disinfectant and biocidal material against bacteria and viruses. There is also increased interest in the nano-sized silver particles which can be used as effective bactericidal material. The purposes of this study were to investigate the effect of silverized elastomers on growth of oral pathogenic microorganisms, including Streptococcus mutans, Fusobacterium nucleatum, Porphyromonas gingivalis by comparing with conventional non-silverized elastomers. The antibacterial efficacy of silverized elastomer against oral pathogenic microbes was investigated by modified disk diffusion test and growth inhibition test. In modified disk diffusion test, silverized elastomer showed no antibacterial activity against S. mutans, F. nucleatum and P. gingivalis, In culture medium, the growth of S. mutans, F. nucleatum, P. gingivalis was not inhibited by silverized elastomer. Silverized elastomer exhibited no bacteriostatic and/or bacteriocidal effects against some experimental strain.nd clinical indications and diseases.
뽕나무병원성세균에 대한 Beaveria bassiana 6균주의 항균활성을 paper disc법으로 조사하였고 최소성장저해농도(MIC)를 액체배지희석법으로 조사하였다. 항균활성은 B. bassiana J200에서만 나타났으며, Erwinia rhapontici KACC 10407에서는 13mm, Pseudomonas syringae KACC 10390와 Xanthomonas campestris KACC 12134에서는 각각 17 mm의 항균활성이 나타났다. MIC 측정 결과 E. rhapontici KACC 10407, P. syringae KACC 10390 및 X. campestris KACC 12134 모두 4.0%에서 MIC를 보였다. 이상의 결과로 B. bassiana의 뽕나무병원성세균에 대한 생물학적 방재제로서의 이용 가능성을 확인하였다.
The cultural characteristics and antibacterial activities of Cordyceps militaris and Paecilomyces tenuipes were compared. The mycelial growth was the highest on MCM (Mushroom Complete Medium) for C. militaris and on YMA (Yeast Malt Agar) for P. tenuipes. But the mycelial density on MMM (Mushroom Minimal Medium) was lower than other on media. The optimum mycelial growth was observed at 25℃. C. militaris was low mycelial growth when it was transferred over 5 times generation. The carbon source for the optimum mycelial growth was fructose of monosaccharide, maltose of disaccharide and dextrin of polysaccharide. The calcium nitrate of organonitrogen was found the best mycelial growth on C. militaris, while the sodium nitrate observed to be well for mycelial growth on P. tenuipes. The ammonium tartrate was observed to be the best among the inorganonitrogen used for mycelial growth. Antibacterial activities were found out just C. militaris against Bacillus cereus of Gram (+).
새로운 항균물질의 탐색이 활발하다. 선행연구에서 새로운 항균활성물질을 생산하는 세균이 한국토양에서 분리되어 Paenibacillus polymyxa DY1으로 동정 및 명명되었으며, 다제내성 장내세균들에 대한 항균활성 특성이 규명되어 새로운 항생물질로서 잠재력을 보여주었다. 본 연구에서 배지의 탄소원, 무기질소원, 유기질소원, 아미노산, 무기염류 등의 영양 조성물과 물리화학적 생장조건이 P. polymyxa DY1 균체의 생장과 항균활성 생산에 미치는
동결 건조된 죽력을 물 또는 50% ethanol에 각각 용해시킨 시료(1 mg eq./disc)에 대하여 항세균 활성을 측정한 결과, 물에 용해시킨 죽력은 gram 양성균의 경우 L. monocytogenes이 15 mm의 저해환으로 가장 활성이 강하였고 B. subtilis는 활성이 전혀 나타나지 않았으며 Gram 음성균의 경우는 S. dysenteriae가 저해환이 22 mm로 가장 강한 활성을 보였다. 50% ethanol에 용해시킨 죽력은 gram 양성균의 경우 L. monocytodenes, 가 가장 강한 활성을 보였으나 B. subtilis는 활성이 전혀 없던 물에 용해시킨 경우에 비하여 활성이 크게 나타났다. Gram 음성균의 경우, S. dysenteriae가 23 mm저해 환으로 가장 강한 활성을 보였고 V. parahaemolyticus, V. vulnificus, E. coli O157:H7는 16 mm로 상대적으로 약한 활성을 보였다. 젖산균 2종의 경우는 물 또는 50% ethanol에 용해시킨 경우 모두 전혀 활성을 나타내지 않았다. 최소저해농도는 L. monocytogenes는 50% ethanol에 녹인 경우 MIC가 0.6 mg/disc로 가장 낮았고 물에 용해시킨 죽력의 경우 S. epidermides, S. dysenteriae, L. monocytogenes, Sal. typhimurium, V. parahaemolyticus가 각각 0.8 mg/disc의 MIC값을 나타내 50% ethanol에 용해시킨 경우에 비하여 MIC값이 높은 경향을 보였으며 다른 세균들은 1.0 mg/disc의 거의 유사한 MIC값을 보였다. Model food system에서의 저해활성은 물에 용해시킨 죽력 보다 50%, ethanol에 용해시킨 죽력이 대조구에 비하여 생육을 강하게 저해하였고 MIC가 낮은 이들 4가지 공시균주들이 모두 model food system상에서 상당히 강한 저해활성을 나타내 50% ethanol에 용해시킨 죽력은 적절한 농도에서 부패세균들의 생육 억제제로 사용 가능할 것으로 사료되었다.
Antibacterial activities in each part of watercress(Oenanthe javanica D.C.) grown under different culture conditions were measured to determine the possibility to use watercress as a resource to develop the antibacterial substance. The leaves of watercress were extracted with methanol and the methanol extract was further fractionated with various organic solvents. Antibacterial activities against Shigella dysenteriae ATCC 9361 in all fractions were determined according to the agar diffusion method using paper disc. Methanol extract of watercress leaves was more effectively inhibited the growth of the tested bacteria than the extracts of roots or stems at the concentration of 0.5 g eq./disc, and the extract of watercress from Hwasoon was the most effective one as compared to others. Phenolic and neutral fractions fractionated from methanol extract of watercress had a considerable inhibiting activity on the growth of the bacteria, but acidic and basic fractions did not show any inhibitory effect. Minimum inhibitory concentrations of phenolic and neutral fractions against Shigella dysenteriae ATCC 9361 were 400 μg/disc and 550 μg/disc, respectively.
Background: The extract of Abies holophylla is used as an ingredient in cosmetics. This study assessed the antioxidant and antibacterial activities of the material remaining after the extract is used.
Methods and Results: The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethyl benzothiazoline)-6-sulfonic acid (ABTS) radical scavenging abilities were assessed to determined the free radical scavenging activity. The total phenol and flavonoid contents were determined to measure the antioxidant activity. The DPPH and ABTS radical scavenging activities of the resudual extract were higher (95.61 - 99.42% and 74.26 - 77.98% in water extract respectively) than those of the positive control. In 50% EtOH extract, the total phenol content was 389.84 ㎎·GAE/㎖, and the total flavonoid was 0.15 ㎎·QE/㎖. The minimum inhibition concentration degree for antibacterial activity against Staphylococcus aureus was < 8 to < 125 ㎍/㎖ compared to that of the positive control in all extracts. The clear zone against S. aureus was found to be 12.2 ± 3.8 ㎜.
Conclusions: The A. holophylla byproducts were found to have antioxidant and antibacterial activities. Therefore, the materials remaining after the A. holophylla extract is used in cosmetics has potential functional uses. Key Words: Abies holophylla, Staphylococcus aureus, Antioxidant Activity, Antibacterial Activity