검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 138

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the operating performance of the heat pump dryer using the PF heat exchanger was experimentally studied. The capacity, COP, drain, SMER and operating status of the cooling cycle of the heat pump dryer were investigated according to the temperature, relative humidity and flow rate of the indoor air. Heat pump dryers are refrigerant-air system. For the dryer performance experiment, an air enthalpy calorimeter was used. From the experimental results, as the temperature, relative humidity, and flow rate of the inlet air increased, the capacity, COP, drain, SMER of the dryer increased. The change in the performance of the dryer was most affected by temperature. The P-h diagram of the cooling system showed that the operation status of the dryer was greatly affected by the indoor temperature. In addition, the SMER of the dryer showed a drying performance of about 3.38 kg/kWh or more within all experimental ranges.
        4,000원
        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A computational analysis was performed to study the thermal characteristics within the injection molding process of polygon mirrors in LiDAR systems. Such polygon mirrors are significantly influenced by the geometric shape of the injection mold as well as temperature and operating conditions. The analysis included the temperature distribution, heat flux, and variations in heat transfer rate of the polygon mirror from initial conditions. From the beginning of the injection process, temperature of the polygon mirror changes rapidly, leading to conductive heat transfer to the mold. There are large variations in the mirror temperature change depending on local position, and surface heat flux are affected by internal cooling path. These results are expected to be used as thermal design data for various polygon mirror processes.
        4,000원
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The research aimed to develop a high-efficiency plate-type heat exchanger for exhaust gas using computational fluid dynamics (CFD) thermal analysis based on the plate shape, and to identify the optimal shape. Following this, a water/air plate heat exchanger was manufactured, and its characteristics were studied experimentally. As the Re number increases on the gas (or air) side, the heat transfer rate increases significantly, whereas an increase in the Re number on the water side leads to a smaller increase in heat transfer. This is attributed to the larger convective heat resistance on the gas side, causing a substantial reduction in gas-side heat resistance as gas velocity increases, resulting in a considerable overall reduction in heat resistance. The fluid flow pressure drop showed similar results between the CFD calculations and experimental outcomes.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The heat transfer characteristics of double-pipe spiral heat exchanger were investigated by various curvature sizes, experimentally. The three different sizes of heat exchanger were made and tested with water as a working fluid to analyze the heat transfer characteristics. The heat transfer rates, overall heat transfer coefficient and pressure drop were analyzed with various heat exchanger sizes (i.e., curvature ratios). As result, the heat transfer rate increased with increasing the size of the heat exchanger as the flow rate increased due to increasing the area size of heat transfer. However, the overall heat transfer coefficient and pressure drop increased with decreasing the heat exchanger size (i.e., increased curvature ratio) due to the enhanced centrifugal force and inertia.
        4,000원
        5.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we designed and manufactured a large angular contact ball bearing (LACBB) with low deformation using JIS-SUJ2 steel and analyzed changes in its structural characteristics and chemical composition upon heat treatment. The bearing was produced by hot forging and heat treatment including a quenching and tempering (Q/T) process, and its properties were analyzed using 4 mm thick specimens. A difference in the size distribution of the carbide in the outer and inner parts of the bearing was observed and it was confirmed that large and non-uniform carbide was distributed in the inner part of the bearing. After heat treatment, the hardness value of the outer part increased from 13.4 HRC to 61 HRC and the inner part increased from 8.0 HRC to 59.7 HRC. As a result of X-ray diffraction (XRD) measurements, the volume fraction of the retained austenite contained in the outer part was calculated to be 3.5~4.8 % and the inner part was calculated to be 3.6~5.0 %. The surface chemical composition and the content of chemical bonds were quantified through X-ray photoelectron spectroscopy (XPS), and a decrease in C=C bonds and an increase in Fe-C bonds were confirmed.
        4,000원
        6.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The shell & tube-type heat exchanger has been frequently used because it shows simple structure, easy manufacturing and wide operation conditions among many heat exchangers. This study aims to investigate the characteristics for thermal flow of coolant and the possibility of damage for tube equipped with shell due to thermal stress. For these purposes, The thermal flow of coolant in tube was simulated using ANSYS-CFX program and thus the behaviors of coolant were evaluated with standard k-ε turbulence model. As the results, as the flow rate of coolant in tube was increased, the mean relative pressure was also increased with quadratic curve, however, as the surface temperature of tube was increased, mean temperature difference was linearly increased. Finally it showed that the damage of tube could be predicted, that is, which tube was the most weak due to thermal stress.
        4,000원
        7.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Low alcohol (6%) wines were manufactured using Campbell Early. To develop the sterilization process of low alcohol wines, red wines were heat sterilized, and rose wines were nonthermal sterilized by concentration using potassium metasulfite and potassium sorbate. Samples were stored at 25℃ and quality characteristics were investigated by period. Results of this study revealed the pH of the samples after sterilization ranged from 3.15 to 3.19, and the total acidity of wines ranged from 0.011 to 0.024%. The free SO2 contents of wines ranged from 13.00 to 29.678 mg/L, and the total SO2 contents of wines ranged from 47.50 to 121.00 mg/L. L (lightness) of wines decreased whereas a (redness) and b(yellowness) increased. The hue value of wines ranged from 0.52 to 1.03, and decreased significantly(not including rose sweet wines). The color intensity of red and rose dry wines after sterilization increased, whereas red and rose sweet wines decreased. The DPPH radical scavenging activity of red wines and rose wines ranged between 75.50 to 89.23%, and 36.60 to 56.54%, respectively. The total polyphenol contents were 57.51~182.63 mg%. Results of this study provide scientific information to establish the sterilization process of low alcohol wines.
        4,000원
        8.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Test of the operating characteristics and energy saving performance of a container cooling system that reduces the operating energy of a refrigeration system using a loop thermosyphon heat exchanger that removes heat by temperature difference between outdoor and indoor was performed. As a result of the experiments, when the loop thermosyphon and the refrigeration system were operated simultaneously, the refrigeration system operated intermittently by reducing the heat load. As the temperature difference between indoor and outdoor increased, the operating time of the refrigeration system decreased and the energy efficiency rate increased. Energy efficiency rate showed a tendency to increase with increasing temperature difference, and the predicted correlation of energy efficiency rate using the performance of the loop thermosyphon heat exchanger and the refrigeration system was relatively consistent with the experimental value.
        4,000원
        9.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, to investigate the cooling characteristics of the multi-heat pump with 3 indoor units, 7 indoor unit combinations and 3 setting temperatures are selected to study the cooling characteristics during steady-state operation. The cooling capacity, power consumption, COP, compressor high and low pressure of the heat pump are tested under the cooling standard temperature conditions using an air enthalpy multi-calorimeter. The experimental results show that, except for an operation with an indoor unit capacity of 30% or less, the cooling capacity, power consumption, and compressor operation frequency increase as the capacity of the indoor unit increases and the setting temperature of the indoor unit decreases. COP increases or decreases according to the compressor frequency, and is the best at 50-80% capacity of the indoor unit. As the compressor frequency increases, the compressor outlet pressure increases by about 30%.
        4,200원
        10.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The increasing heat wave warnings during the summer season in Korea have significant impacts on daily life and industry as a whole, especially in urban areas (such as areas with asphalt and sidewalk pavements). Heat waves directly affect urban heat island and heat dome phenomena. Various urban temperature reduction measures are being discussed to reduce urban heat islands and heat dome phenomena and to improve citizen safety against summer heat waves; suggestions include thermal packaging, rooftop greening, and expansion of vegetation areas. There is a lack of analysis on the methodology for increasing the road spraying effect during summer heat waves (e.g., there is no systematic engineering study on the effect from reducing the temperature of the road spraying during a heat wave in the city) and on the types of road pavements in the city. In addition, as the asphalt pavements of roadways and block pavements installed in sidewalks account for a considerable portion of all pavements, this study provides a more systematic and scientific approach and procedures for reducing temperatures through road spraying in the city by tracking the effects of heat waves. METHODS : In this preliminary experiment, four types of road pavement materials were selected as test specimens: asphalt test specimens (AP- 300 mm × 300 mm × 50 mm), concrete test specimens (CP-300 mm × 300 mm × 50 mm), impermeable blocks (IB-200 mm × 200 mm × 60 mm), and self-permeable blocks (PB-200 mm × 200 mm × 60 mm). As a test method to evaluate the size and duration of each spray effect package type, the surface temperature of each specimen was measured using thermal imaging cameras every 20 min after spraying at the maximum temperature point of each specimen, and the average surface temperature was analyzed based on the collected temperature data. In addition, to conduct a quantitative analysis of the effect of reducing the surface temperature of road pavements by road spraying in summer, field tests were conducted on asphalt roads and watertight blocks for sidewalks. RESULTS : As a result of the comparative analysis of the spray effect under a 36 ℃ air temperature based on a heat wave warning, the surface temperatures were, from high to low, the asphalt (68.8 ℃), concrete (59.1 ℃), impermeable block (57.3 ℃), and permeable block (58.7 ℃). The asphalt pavement had the greatest effect on the heat island and heat dome phenomena. From measuring the temperature reduction effect and sustainability of each type of road pavement, the surface temperature reduction effects were ranked in the following order: water-permeable block (Δ18.0 ℃), asphalt test piece (Δ17.5 ℃), concrete test piece (Δ12.2 ℃), and water-permeable block (over 240 min). In the report pitching block, the average road surface temperature reduction between the pore recovery and treatment was expected to continue to decrease by approximately -4.3 ℃ on the day of work and approximately -2.4 ℃ on the next day. The expected effect of the temperature reduction owing to simple spraying on the surface of the pore block was evaluated to be limited to the day. CONCLUSIONS : In the road spray effect analysis conducted on the common asphalt road, there was a slight difference in the initial temperature reduction size as the test specimen was measured, but the surface temperature difference between the non-spray section and spray section tended to be approximately Δ3°C after 140 minutes of spraying. Therefore, it was determined that the asphalt pavement temperature reduction plan through road spraying in urban areas in summer would be the most effective if it was repeated twice or more in an hour (between 13:00 and 14:00) on the day of the heat wave.
        4,000원
        11.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Asphalt concrete(Ascon) is used to repair potholes and cracks. Special truck-mounted cargo boxes transport 200℃ asphalt concrete to repair potholes and cracks. However, long working and transportation hours to repair wide roads decrease the temperature of the asphalt concrete inside the cargo boxes. If the asphalt concrete temperature drops below 170℃, the adhesion with roads that need repair decreases. Therefore, the temperature of the asphalt concrete needs to be maintained for a long time. Conventional asphalt concrete cargo boxes are mostly burner-type models using hot air to prevent the temperature of the asphalt concrete from dropping. However, there are significant temperature differences between the asphalt concrete near and far away from the hot air, so the temperature decreases over time and leads to the disposal of large amounts of asphalt concrete. This causes waste of resources and environmental pollution. Therefore, this study proposed a heat dissipation cut-off type cargo box model to solve this problem and demonstrated its performance over conventional burner-type models through tests and analysis.
        4,000원
        12.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to study the drying performance of the dryer, the performance characteristics of the heat pump dryer applied a PF heat exchanger is applied were experimentally investigated. The capacity, COP, drain and SMER of the dryer were measured by the refrigerant charge and EEV opening. Heat pump dryers are refrigerant-air systems. For the dryer performance test, an air enthalpy calorimeter was used. From the experimental results, the heat exchanger performances according to the change in the refrigerant charge and EEV opening were the maximum at 0.5kg refrigerant and 30% EEV opening, respectively. In addition, SMER suggested a satisfactory level of drying performance. This shows that the refrigeration cycle of the dryer must be operated at an appropriate refrigerant amount and EEV opening degree to secure optimal drying performance. On the other hand, the time to reach the target setting temperature of the dryer was increased by about 2.5 times depending on with/without the sample.
        4,000원
        14.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 CO2 가스 배출 저감 및 선박 폐열 회수 증대를 목적으로 선박 배기로 버려지는 폐열을 전기로 변환하는 ORC(Organic Rankine Cycle) 발전에 대해 시뮬레이션을 통한 냉매별 효율을 보여주고 있다. 상대적으로 고온인 배기가스의 폐열과 상대적으로 저온인 냉각해수를 이용하여 Aspen HYSYS 11을 이용하여 시뮬레이션을 수행하였다. 해수냉각 ORC 발전시스템의 시뮬레이션 결과, 작동유체 효율은 R717 냉매가 2.86 %로 가장 높았고, 다음 순으로 R152a, R134a, R143a, R125a로 나타났다.
        4,000원
        15.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, we aimed to investigate the heat transfer characteristics of asphalt mixtures by water saturation. METHODS : On the basis of the literature review, the heat transfer characteristics of the samples were analyzed using a thermal accumulation experiment. The types of samples used were WC2 (dense asphalt mixture), ReWC2 (used 30% recycled aggregate), and PA13 (drainage asphalt mixture). The samples were compacted using a gyratory compactor. An infrared lamp simulating insolation was used to continuously heat the asphalt sample. Through this experiment, the upper and lower temperatures and heat flux of the specimen according to its thickness and condition were measured, and the change in its thermal conductivity was analyzed. RESULTS : The results of the laboratory experiment indicated that the dry sample showed lower thermal conductivity than the saturated sample. The amount of evaporation varied depending on the internal pores of the sample. Additionally, the amount of evaporation changed the heat transfer characteristics of the specimen. CONCLUSIONS : An asphalt mixture with high porosity decreased the degree of increase in thermal conductivity, compared to mixtures with low porosity, under semi-saturated conditions; this was attributed to the difference in thermal conductivity between air and water during saturation. The results of this study on the heat transfer characteristics of asphalt pavements could be used as basic data for thermal energy harvesting of asphalt pavements.
        4,000원
        16.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Solar energy is being constantly studied since it can reduce green house gas by adapting cooling and heating system of domestic architecture as a clean energy source. This study confirmed the reliability of experimental apparatus with temperature measurement of each components by developing cooling and heating system which is combined with artificial solar thermal energy using halogen lamp and refrigerator, examined the heat transfer characteristics according to room internal temperature and lamp distance with the materials of emissive plate (acrylic, copper and stainless). As a result of it, We found that the room internal temperature 18℃ was finer than 21℃ and 24℃ in case of heat transfer rate according to each components. Also, copper in the material change of emissive plate was showed finer heat transfer effects than stainless because of high thermal absorptivity when lamp distance was short.
        4,000원
        17.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study sought to investigate the effects of heat-moisture treatment (HMT) and ethanol treatment (EOH) for improving the quality and storage stability of Tteokbokki Tteok. The quality characteristics were evaluated by moisture, pH, color, texture profile analysis, and observing the microbial properties after the heat-moisture treatment or ethanol treatment. As the storage period increased, the moisture content of Tteokbokki Tteok tended to decrease except for the HMT group (p<0.05) while the pH did not show significant variation except for the EOH group (p<0.05). While measuring the color, the L-value tended to increase in all groups during the storage period. The a-value and the b-value showed the highest values in the HMT group and the control (CON) group, respectively. In the texture profile analysis, all groups showed a significant tendency to increase levels of hardness and chewiness as the storage period increased (p<0.05). The HMT group showed an increase in hardness and adhesiveness, which are characteristics of the HMT treatment. The results of examining the microbial properties of Tteokbokki Tteok showed that the total microbial count in the HMT group was 4.52 on the 8th day of storage, which was lower than the level in the CON group and the EOH group on the 4th day of storage. Yeast and mold were not measured during the storage period. Thus the results of this study showed that when manufacturing Tteokbokki Tteok, the heat-moisture treatment of rice powder increased the storage stability by delaying microbial growth and also had positive effects on quality.
        4,000원
        18.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of flow direction on heat transfer in water cooling channel of lithium-ion battery is numerically investigated. Battery Design StudioⓇ software is used for modeling electro-chemical heat generation in the battery and the conjugated heat transfer is analyzed with the commercial package STAR-CCM+. The result shows that the maximum temperature and temperature difference of battery with Type 1 are the lowest because the heat transfer in the entrance region near the electrode is enhanced. As the inlet velocity is increased, the maximum temperature and temperature difference of battery decreases but the pressure loss increases. The pressure loss in Type 2 channel is the lowest due to the shortest channel length, while the pressure loss with Type 3 or 4 channel is the highest because of the longest channel length. Considering heat transfer performance and pressure loss, Type 1 is the best cooling channel.
        4,000원
        19.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the heat transfer performance of nanofluids is predicted by numerical analysis methods. The nanoparticles used in this study is SiO2, with concentrations of 1, 2, 3vol.%, and the base fluid is water. Reynolds number of nanofluids ranges from 10,000 to 50,000. A numerical study on the heat transfer characteristics of nanofluid was conducted using a single-phase model. The temperature of the fluid entering from the inlet of the tube is 293.15K. A constant heat flux of 31,650W/m2 was applied at the wall, and the thickness of the wall was ignored. Heat transfer coefficients, thermal conductivity and Nusselt number were selected as indicators for comparing heat transfer performance of nanofluids. As the nanofluid concentration increases, the temperature and velocity distribution by the cross section of the coil tube and straight tube increased. As the Reynolds number increases, temperature difference between inner direction and outer direction reduced in coil tube. For straight tube, the temperature difference between the wall and the center of the tube also decreased.
        4,000원
        1 2 3 4 5