검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        9.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The processing properties of spent hen and broiler chicken were investigated before and after treatment to improve texture characteristics. Each treatment consisted steaming (S) with 85℃ for 20 min, Pulsed Electric Field (PEF) with 1.5 KV/cm for 4 sec, and Super Heated Steam (SH) with an oven temp. of 300℃, a steam temp. of 350℃ for 8 min. The yield of spent hen and broiler were 66.85% and 63.80% respectively in the control, but decreased in every treatment was lowest at 61.05% in the PEF treatment (p<0.05). In the color test, L value decreased, but the a and b values increased regardless of the species of spent hen or broiler. In the test of heating loss, the S treatment of spent hen had the highest result of 45.25% but lowest of 30.66% in the SH treatment of the broiler. When it was compared with various treatments, SH after PEF treatment showed the better result in terms of heating loss than the PEF or SH treatment respectively. In the test of texture, the broiler showed the lowest hardness of 5.57 kg in the SH (p<0.05). Otherwise, the spent hen resulted in 14.08 kg of hardness in steaming after PEF, but it improved significantly to 10.73 kg in SH after PEF. In the test of 9 scored sensory evaluation of overall palatability, 7.8 point was the best score with SH treatment in the broiler. The best score in spent hen was 6.3 point which was SH after PEF treatment. With this experiment, SH after PEF was the condition in the treatments to have the better texture of spent hen.
        4,000원
        10.
        2016.10 구독 인증기관·개인회원 무료
        Broccoli, one of Brassica vegetables, has been known to possess various health beneficial activities including anti-inflammation, anti-oxidation and anti-cancer etc. Various metabolites were indicated as active compounds in broccoli. Glucosinolates such as glucoraphanin, glucobrassicin, glucoerucin and isothiocyanates, i.e. sulforaphane, which is produced through the enzymatic action of myrosinase are getting focus as their bioactivities. In this study, we treated broccoli with pulsed electric field (PEF) processing and the metabolite profiles were investigated based on the metabolomics analysis. PEF process was applied to stem and floret of broccolis with three different levels; 500, 1000, 1500 pulses with 2 kV/cm, then metabolites were extracted with 70% methanol. Metabolomic analysis was carried out with mass spectrometry through multivariate statistical analysis based on the OPLS-DA model. Significant changes of metabolite profiles were observed by PEF treatment and specific metabolites were affected as dose dependent manner. Content of major glucosinolates compounds such as glucoerucin, glucoiberin, glucoraphanin, glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin were significantly reduced, while sulforaphane was distinctively increased in PEF treated broccolis. The results implied that myrosinase released from vacuole by PEF processing transformed glucosinolate into isothiocyanate, which would be useful findings for enhancing bioactivity of broccoli by simple PEF treatment.
        11.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pulsed electronic field(PEF) 처리에 의한 우유 단백질과 물리화학적 특성의 변화를 확인하기 위하여 원유, 탈지유, HTST, LTLT, UHT 우유를 PEF 처리하였다. 시료 중의 단백질을 SDS-PAGE로 확인하였을 때, PEF 처리에 의한 우유 단백질의 변성은 관찰할 수 없었다. Differential scanning calorimetry(DSC)로 우유 단백질의 열변성 정점 온도(Td)를 분석한 결과, 탈지유를 65oC에서 PEF 처리하였을 때 Td가 87.66oC에서 97.18oC로 증가하여 PEF 처리가 우유 단백질의 변성에 영향을 미치는 것을 확인하였다. PEF 처리에 의한 alkaline phosphatase, protease, lactoperoxidase의 잔존효소활성을 측정한 결과, 원유와 탈지유에서 alkalinephosphatase는 PEF 처리에 의해 효소활성이 감소하였다. 또한 protease와 lactoperoxidase의 활성은 PEF 처리에 의해 영향을 받지 않았다. 65oC에서 PEF 처리한 원유는 처리하지 않은 원유보다 높은 갈색도를 나타내었으나, 기타 우유는 PEF에 의한 유의적인 차이가 없었다. 우유를 PEF 처리하였을 경우 산도의 변화는 관찰되지 않았고 pH의 경우에도 PEF 처리 여부에 따라 유의적인 차이는 있었으나 크게 변화하지는 않았다.
        4,000원
        14.
        2013.10 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Apple juices were sterilized by continuous pulsed electric field (PEF) treatments of pulse width of 25 μs at electric field intensity of 20.0 kV/cm, and with the varied pulse frequencies of 35 Hz (40 kJ/L), 55 Hz (70 kJ/L), 72 Hz (100 kJ/L) and 85 Hz (130 kJ/L). The PEF treatments of apple juice reduced the microbial counts from 5.3 log CFU/mL of initial state to 3.0 log CFU/mL after PEF treatment at energy density of 130 kJ/L. Also yeast and fungi after PEF treatments were reduced from 5.3 log CFU/mL to 3.0 log CFU/mL and Escherichia coli were from 5.3 log CFU/mL of initial state to 4.7 log CFU/mL to <101 CFU/mL. The soluble solids and free sugars did not significantly differ (p<0.05) depending on conditions of PEF treatment. The total phenolic contents and antioxidant activity such as the DPPH and ferric reducing antioxidant power (FRAP) by PEF treatments were significantly partly reduced, but the PEF-reduced value came in smaller uantities than the heat treatment at 65℃. The iterative PEF treatments with pulse width of 25 μs and pulse frequency of 85 Hz at electric field intensity of 20.0 kV/cm showed limited in microbial reduction. Also, total phenolic contents and antioxidant activity such as DPPH and FRAP, significantly decreased depending on treatment numbers of PEF (p<0.05).