간행물

한국분말야금학회 학술대회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

한국분말야금학회 2006년도 추계학술대회논문집 (2006년 9월) 358

121.
2006.09 구독 인증기관 무료, 개인회원 유료
Metal sulfide powders such as MnS, MoS2 and FeS are simply used to the machinery processing improvement agent and solid lubricant in powder metallurgy industrial. And then, metal sulfide powders have received relatively little attention from powder metallurgy. Recently, the portable machine is one of the important interfaces between human or human and electronic machine. With the increase of the intelligent activity, the social and industrial demands for information display device and power source are increasing. The transition metal sulfide materials (FeS, ZnS) have received considerable attention due to the large variety of its electric, optical and magnetic properties. Among the metal sulfide, FeS2 is appealing superior material for applications in Li-2nd battery because of high capacity. ZnS is also a famous phosphor material with various luminescence properties, such as photoluminescence (PL) and electroluminescence (EL). So generally used in the fields of display, sensors and laser. Metal sulfide materials, therefore, are provided for most widely application in all industries. In recent years, material researchers have become increasingly interested in studying with synthesis of metal sulfide.
3,000원
124.
2006.09 구독 인증기관·개인회원 무료
Thermal management is one of the critical aspects in the design of highly integrated microelectronic devices. The reliability of electronic components is limited not only to operating temperature but also by the thermal stresses caused during the operation. The need for higher power densities calls for use of advanced heat spreader materials. A copper diamond composite has been developed with high thermal conductivity (λ) and tailorable coefficient of thermal expansion (CTE). Copper diamond composites are processed via gas pressure assisted infiltration with different copper alloys. Emphasis has been placed on the addition of trace elements in deisgning the copper alloys to facilitate a compromise between thermal conductivity and mechanical adhesion. The interfaces between the alloy and the diamond are related to the thermal properties of these copper composites.
125.
2006.09 구독 인증기관·개인회원 무료
In this study, hydroxyapatite (HAp) and hydroxyapatite-yttria stabilized zirconia (HAp-3YSZ) with 20 vol. %– (ZrO2+3 %mol Y2O3) nanopowders were consolidated very rapidly to full density by High-frequency induction heat sintering (HFIHS). Effects of temperature and the addition of 3YSZ on the toughness, hardness and microstructure properties have been studied. 3YSZ second phase toughening HAp composites with higher toughness were successfully developed at relatively low temperatures through this technique. Compared with hardness and toughness obtained for pure HAp, the hardness and toughness for HAp-20vol. % 3YSZ were much higher.
126.
2006.09 구독 인증기관·개인회원 무료
Sr2Ta2O7, a layered perovskite compound, has been reported to possess most excellent photocatalytic properties among the layered perovskite materials. Recently, we have demonstrated that Ba5Ta4O15 that was prepared under a mol ratio of Ba: Ta=1:1 has high photocatalytic performance as well as Sr2Ta2O7. In this study, the photocatalyst samples with a mol ratio of Sr: Ba: Ta = (1-x): x: 1 were prepared. The maximum photocatalytic performance was obtained for x= 0.2, which is three times as high as that of undoped Sr2Ta2O7.
127.
2006.09 구독 인증기관·개인회원 무료
Tensile stress-strain and dynamic acoustic resonance tests were performed on Fe-C-Ni-Cu-Mo high-strength steels, characterized by a heterogeneous matrix microstructure and the prevalence of open porosity. All materials display the first yielding phenomenon and, successively, a continuous yielding behavior. This flow behavior can be described by the Ludwigson equation and developes through three stages: the onset of localized plastic deformation at the pore edges; the evolution of plastic deformation at the pore necks (where the austenitic Ni-rich phase is predominant); the spreading of plastic deformation in the interior of the matrix. The analytical modeling of the strain hardening behavior made it possible to obtain the boundaries between the different deformation stages.
129.
2006.09 구독 인증기관·개인회원 무료
The microstructures of Ni-containing P/M steels produced by admixed powders or diffusion alloyed powders are usually heterogeneous. To improve the microstructure homogeneity, the effects of Mo and Cr additions in the prealloyed powder form were examined. The results showed that the microstructural homogeneity was improved and superior mechanical properties were achieved with increases in the alloy content, particularly for the Cr. Such a beneficial effect was attained due to the reduction of the repelling effect between Ni and C, as was demonstrated through thermodynamic analysis using the Thermo-Calc software.
130.
2006.09 구독 인증기관·개인회원 무료
The present study examines the sintering behaviour and effect of manganese addition both mechanically-blended and mechanically alloyed on Cr-Mo low alloyed steels to enhance the mechanical properties. Mn sublimation during sintering provides some specific phenomena which facilitate the sintering of alloying elements with high oxygen affinity. First step is the optimization of milling time to attain a master alloy with 50% of Mn which is diluted in Fe-1.5Cr-0.2Mo water atomized prealloyed powder by normal mixing. These mixtures are pressed to a green density of 7.1 g/cm3 and sintered at 1120 ºC in 90N2-10H2 atmosphere.
133.
2006.09 구독 인증기관·개인회원 무료
Bulk amorphous materials have been intensively studied to apply for various advanced industry fields due to their high mechanical, chemical and electrical properties. These materials have been produced by several techniques such as mechanical alloying, melt spinning and gas atomization, etc. Among them, the atomization is the most potential technique for commercialization due to high cooling rate during solidification of the melt and mass productivity. However, the amorphous powders still have some limitations because of their low ductility and toughness. Therefore, intensive efforts have to be carried out to increase the ductility and toughness. In this study, the Ni-based amorphous powder was produced by the gas atomization process. And in order to increase the ductile toughness, ductile Cu phase was coated on the Ni amorphous powder by spray drying process. The characteristics of the as-synthesis powders have been examined and briefly mentioned. The master alloy with Ni57Zr20Ti16Si2Sn3 was prepared by vacum induction melting furnace with graphite crucible and mold. The atomization was conducted at 1450oC under the vacuum of 10-2 torr. The gas pressure during atomization was varied from 35 to 50 bars. After making the Ni amorphous powders, the spray drying was processed to produce the Cu -coated Ni amorphous composite powder. The amorphous powder and Cu nitrate solution were mixed together with a small amount of binder and then it was sprayed at temperature of 130oC and rotating speed of 15,000 R.P.M..
134.
2006.09 구독 인증기관·개인회원 무료
Tungsten heavy alloys with different ratios of Mo and Ni-Fe matrix were liquid-phase-sintered to investigate their microstructural evolution. Results indicated that increased Mo in the alloy promoted the formation of a (W,Mo)(Ni,Fe) type intermetallic compound in the furnace-cooled condition. It was a monoeutectic reaction when the added Mo content was higher than 49at.%, or a eutectic reaction when this value was between 37at,% to 49at.%. When Mo was added between 25at.% to 37at.%, the precipitation of the intermetallic compound took place by either a eutectoid or peritectoid reaction.
136.
2006.09 구독 인증기관·개인회원 무료
We developed a new tooth profile designed for P/M internal gear pump rotors. The theoretical discharge volume of the new tooth profile internal gear rotors is more than 10% higher than that of the same size conventional rotors. Our new profile rotors can achieve a decrease in torque, and fuel-efficiency will also be improved.
137.
2006.09 구독 인증기관·개인회원 무료
To meet the demands for use in extremely abrasive and corrosive environments, a new material was developed. The VeKo25Cr distinguishes itself through specifically selected amounts of carbon and carbide forming elements such as Cr, Mo, V, W and Nb. The alloy is based on a Fe matrix. The strength after heat treatment and the wear and corrosion properties are compared to those of other materials. VeKo25Cr can be combined with easy-to-process materials such that the difficult handling is minimized to those places on the piece most subjected to operational wear.
138.
2006.09 구독 인증기관·개인회원 무료
A new tungsten heavy alloy with hybrid structure was manufactured for the kinetic energy penetrator. The tungsten heavy alloy is composed of two parts: core region is molybdenum added heavy alloy to promote the self-sharpening; outer part encompassing the core is conventional heavy alloy to sustain severe load in a muzzle during firing. From ballistic test, it was found that the penetration performance of the hybrid structure tungsten heavy alloy is higher than that of conventional heavy alloy. This heavy alloy is thought to be very useful for the penetrator in the near future.
139.
2006.09 구독 인증기관·개인회원 무료
Driven by the unavailibility of commercial test equipment for tensile and creep testing at temperatures up to 3000°C a measuring system has been developed and constructed at the University of Applied Sciences, Jena. These temperatures are reached with precision by heating samples directly by electric current. Contact-less strain measurements are carried out with image processing software utilizing a CCD camera system. This paper covers results of creep tests which have been conducted on TZM sheet material (thickness 2 mm) in different heat-treatment conditions in the temperature range between 1200°C and 1600°C.
140.
2006.09 구독 인증기관·개인회원 무료
An infiltration technique using W-Cu composite powder has been developed to enhance microstructural uniformity of W-Cu pseudo-alloy. W-Cu composite powder, manufactured by reduction from WO3 and CuO powder mixtures, were blended with W powder and then cold iso-statically pressed into a cylindrical bar under 150 MPa. The pressed samples were pre-sintered at 1300 oC for 1 hour under hydrogen to make a skeleton structure. This skeleton structure was more homogeneous than that formed by using W and Cu powder mixtures. The skeleton structures were infiltrated with Cu under hydrogen atmosphere. The infiltrated W-Cu pseudo-alloy showed homogeneous microstructure without Cu rich region.