검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 644

        341.
        2006.09 구독 인증기관·개인회원 무료
        Silicon nitride - silicon carbide composite was developed by using an abrasive SiC powders as a raw material. The composites were prepared by mixing abrasive SiC powder with silicon, pressing and sintering at under nitrogen atmosphere in atmosphere controlled vacuum furnace. The proportion of silicon in the initial mixtures varied from 20 to 50 wt%. After sintering, crystalline phases and microstructure were characterized. All composites consisted of and as the bonding phases in SiC matrix. Their physical and mechanical properties were also determined. It was found that the density of the obtained composites increased with an increase in the content formed in the reaction.
        342.
        2006.09 구독 인증기관·개인회원 무료
        Carbon nanotube (CNT) reinforced hydroxyapatite (HAp) composites were fabricated by using the spark plasma sintering process with surfactant modified CNT and HAp nano powder. Without the dependency on sintering temperature, the main crystal phase existed with the HAp phase although a few contents of (Tri calcium phosphate) phase were detected. The maximum fracture toughness, was obtained in the sample sintered at and on the fracture surface a typical intergranular fracture mode, as well as the pull-out pmhenomenon of CNT, was observed.
        343.
        2006.09 구독 인증기관·개인회원 무료
        In this investigation, based ceramic composites were fabricated by in-situ reaction hot pressing using , TiC SiC powder as starting materials. The reaction synthesized composites by hot pressing at was found to posses very high relative density. The reaction synthesized composites comprise , , SiC and graphite by the reaction between TiC and . The newly formed and graphite was embedded both inside grain and at grain boundary . The mechanical properties of reaction synthesized -graphite composites were more enhanced compared to those of monolithic .
        344.
        2006.09 구독 인증기관·개인회원 무료
        The aging behavior of sintered Al composites with various ceramic contents was investigated. 2xxx series blended powder was used as the starting powder. Ceramic contents were 0wt.% and 5wt.%. The blended powders were compacted at 250MPa. The sintering process was performed at for 60min in a atmosphere. Each part was solution-treated at for 60min and aged at . The Rockwell hardness at the peak aging time increased with ceramic contents. However, the peak aging time at maximum hardness was reduced with increased ceramic contents.
        345.
        2006.09 구독 인증기관·개인회원 무료
        Mechanical properties of 7xxx series Al metal matrix composite (MMC) powders containing different amounts of ceramic were investigated. The ceramic contents of the starting powders were 5 wt.% or 10 wt.%. The powders were uniaxially cold compacted using a cylindrical die with a compacting pressure of 250 MPa and were sintered at in a dry atmosphere for 60 min. For the heat treatment, sintered parts were solution treated at and aged at . Compression tests were conducted to reveal the effect of particle content on the mechanical properties of the composites. Fractography was examined using a scanning electron microscope.
        346.
        2006.09 구독 인증기관·개인회원 무료
        This paper presents a new approach for analyzing the microstructure of -reinforced aluminum matrix composites from digital images. Various samples of aluminum matrix composite were fabricated by hot pressing the powder mixtures with certain volume and size combinations of pure Al and SiC particles. Microstructures of the samples were analyzed by computer-based image processing methods. Since the conventional methods are not suitable for separating phases of such complex microstructures, some new algorithms have been developed for the improved recognition and characterization of the particles in the metal matrix composites.
        347.
        2006.09 구독 인증기관·개인회원 무료
        The preparation of metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.
        349.
        2006.09 구독 인증기관·개인회원 무료
        Bend tests were performed at temperatures between 77 and 473K for W-19vol%Cu, W-22vol%Ag and W-19vol%(BAg-8) composites. Yield and maximum strengths and ductility of the composite were discussed in terms of microstructure and fractography. Results are summarized as follows. (1) Almost no difference was recognized in yield strength between the composites. In contrast, a large difference was recognized in maximum strength and ductility between the composites. (2) Inferior mechanical properties of W-Ag composite to W-Cu composite are attributed to heterogeneous distribution of Ag-phases, whilst inferior mechanical properties of W-(BAg-8) composite to W-Cu composite are attributed to large pores at grain boundaries.
        350.
        2006.09 구독 인증기관·개인회원 무료
        Titanium alloys and Titanium alloy-based particulate composites were synthesized using the blended elemental P/M route. First, processing conditions such as the fabrication of master alloy powder were investigated. Ti-6Al-4V, Ti-5Al-2.5Fe, Ti-6Al-2Sn-4Zr-2Mo, IMI685, IMI829, Timetal 1100 and Timetal 62S, and Ti-6Al-2Sn-4Zr-2Mo/ 10%TiB and Timetal 62S/10%TiB were then synthesized using the optimal processing conditions obtained. The microstructures and mechanical properties such as tensile strength and high cycle fatigue strength were evaluated.
        351.
        2006.09 구독 인증기관 무료, 개인회원 유료
        Particulate reinforced titanium composites were produced by PM rout. Differents volumetric percentages of TiN reinforcements were used, 5,10,15 vol%. Samples were uniaxial pressed and vacuum sintered at differents temperatures between . Density, porosity, shrinkage, mechanical properties and microstructure were studied. Elastic properties and strength resistance were analysed by flexural strength and tension tests, and after the test, fractured samples were analysed too, obtaining a correlation between the fracture, interparticulated or intraparticulated, and the reinforcement addition.. Hardness and microhardness test were applied too, in order to complete the study about mechanical properties. In order to study wear resistance pin-on-disc test were used. In addition, the temperature influence, the reactivity between matrix and reinforcement, and the microstructures developed were observed by optical and electron microscopy.
        3,000원
        353.
        2006.09 구독 인증기관·개인회원 무료
        Thermal management is one of the critical aspects in the design of highly integrated microelectronic devices. The reliability of electronic components is limited not only to operating temperature but also by the thermal stresses caused during the operation. The need for higher power densities calls for use of advanced heat spreader materials. A copper diamond composite has been developed with high thermal conductivity (λ) and tailorable coefficient of thermal expansion (CTE). Copper diamond composites are processed via gas pressure assisted infiltration with different copper alloys. Emphasis has been placed on the addition of trace elements in deisgning the copper alloys to facilitate a compromise between thermal conductivity and mechanical adhesion. The interfaces between the alloy and the diamond are related to the thermal properties of these copper composites.
        354.
        2006.09 구독 인증기관·개인회원 무료
        Bulk metallic glass (BMG) composites combining a Cu54Ni6Zr22Ti18 matrix with brass powders or Zr62Al8Ni13Cu17 metallic glass powders were fabricated by spark plasma sintering. The brass powders and Zr-based metallic glass powders added for the enhancement of plasticity are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation. The BMG composites show macroscopic plasticity after yielding, and the plastic strain increased to around 2% without a decrease in strength for the composite material containing 20 vol% Zr-based amorphous powders. The proper combination of strength and plasticity in the BMG composites was obtained by introducing a second phase in the metallic glass matrix.
        355.
        2006.09 구독 인증기관·개인회원 무료
        For microelectronic circuits, the main type of failure is thermal fatigue. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers to meet these requirements. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed.
        356.
        2006.09 구독 인증기관·개인회원 무료
        The vacuum infiltration method is one of the composite producing methods. There are several parameters in composite production by vacuum infiltration. One of them is particle size of reinforcement in particulate reinforced composites. In this study, MgO powder and Al were used as reinforcement and matrix respectively. MgO powders with different size and amount to give same height were filled in quartz tubes and liquid metal was vacuum infiltrated into the MgO powder under same vacuum condition and for same time. Infiltration height was measured and microstructure and fracture behavior of composite were investigated. It has been found that infiltration height and fracture strength were increased with particulate reinforcement sizes. It has also been determined that molten metal temperature facilitates infiltration.
        357.
        2006.09 구독 인증기관·개인회원 무료
        The paper presents the possibilities of obtaining new composite materials based on sintered porous ceramics with particles and fibre of infiltrated by aluminum alloy. The EN AC - AlSi12 alloy features the matrix material, whereas the RF50AX-301 preform, of Saffil Automotive, was used as the reinforcement. Examinations of ceramics preforms permeability were made. Metallographic examination of composite materials made on light microscope and in scanning electron microscope show that aluminum alloys fill micropores in the matrix. New composite materials show twice higher value of hardness in comparison with matrix. Results indicate that it is possible to infiltrate porous ceramic with liquid aluminum alloy to obtain new composite materials were advantageous properties of each component are connected.
        359.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.
        4,000원
        360.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PTMSP-silica-PEI 복합막이 PTMSP에 TEOS를 가하여 졸-겔 방법에 의해 제조되었다. 복합막의 특성은 1H-NMR, FT-IR, TGA, XPS, SEM, GPC 등을 사용하여 조사하였고, 복합막의 기체투과 특성을 알아보기 위해 H2,O2,N2,CO2,CH4를 사용하였다. PTMSP-silica-PEI 복합막의 기체 투과도는 TEOS의 함량이 증가함에 따라 증가하였다. H2와 CH4는 15 wt% TEOS에서 PTMSP-PEI 복합막보다 투과도와 선택도가 모두 증가하였다. 한편 O2와 CO2는 선택도의 감소없이 투과도가 증가하는 경향을 나타냈다.
        4,000원