To assess a potential possibility of Deoduck as functional food resources, this study was performed to determine the changes in chemical components and antioxidant activities on Deoduck with various aging conditions; aging temperatures were 60, 70, and 80°C, and aging periods were 5, 10, 15, 30, and 50 days. We determined pH, total acidity, browning index, 5-hydroxymethyl-furfural, total phenolic contents, DPPH and ABTS radical scavenging activities of aged Deoduck. Total acidity of aged samples increased during aging treatment, at higher temperature and longer time. The pH value of aged Deoduck ranged from 4.97 to 3.76. Aged Deoduck at 60℃ decreased slowly than 70 and 80℃, and these results were similar in total acidity. 5-HMF and total phenolic contents increased when increased aging temperature and periods. The DPPH and ABTS radical scavenging activities of Deoduck were ranged from 0.374 to 1.560 mg TEAC eq/g and from 0.302 to 1.745 mg trolox eq/g, respectively.
The objectives of the present study were to examine the antioxidant activity of fractions with different isoelectric points from salmon enzymatic hydrolysates and obtain peptide fractions of sufficient amounts with higher antioxidant peptide fraction, which could be applied to the food and animal model systems. The salmon enzymatic hydrolysates were fractionated on the basis of the amphoteric nature of sample peptides by preparative isoelectric focusing without toxic solvents and reagents, which is termed autofocusing. Acidic and basic fractions showed higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than the other fractions. The basic fractions showed higher hydroxyl (OH) radical scavenging activity. The weak acidic and weak basic fractions showed higher oxygen radical absorbance capacity (ORAC) values than the acidic and basic fractions. The acidic fraction showed higher metal chelating activity than other fractions.
The acidic fraction suppressed lipid oxidation in the cooked patties to a greater extent than other fractions. These results suggest that peptides fractions from salmon enzymatic hydrolysate are effective antioxidant, and that autofocusing could be useful to increase antioxidant activity for application to food and animal model systems.
Ramie (Boehmeria nivea M.) has been used for fiber materials in Korea traditionally, but in recent years, the concern with ramie leaves for the food industry such as tteok (a kind of Korean rice cake) industry has been increasing, so a study for eatable ramie is required for the expansion of ramie consumption. Moreover, the ramie varieties for the food industry are not established, so the natural species are cultivated in general; therefore, it is very important to select the ramie varieties for the food industry such as rice cakes, tea, beverage and so on. This study was undertaken to compare the physiochemical properties among 9 ramie lines selected in the Yeonggwang-gun Agricultural Technology Center to select the eatable ramie varieties for the food industry. The contents of the protein among 9 ramie lines was 6.21~7.56% and had the highest content in the YG55. The folic acid (folate) and vitamin C content had varying differences among the 9 lines; the content of folate showed 771.52~1,978.84 μg%, that of vitamin C showed 149.42~275.34 mg%. The ACE inhibitory activity appeared to be the highest in YG88 (21.5%) among the 9 ramie varieties tested.
본 연구는 예부터 약용으로 사용되었거나, 현재 식품공 전에 식품원료로 사용이 가능한 것으로 등록된 국내 산림 지역에 자생하는 식물을 식품산업에 활용하고자 선행연구에서 우수한 항산화 활성을 보인 갈참나무 잎을 본 연구 에서 사용하였다. 70% 에탄올을 이용하여 추출한 갈참나무 잎을 이용하여, hydrogen peroxide로 산화적 스트레스를 유도한 피부 섬유아세포에서의 세포 보호효과, 세포내 항산화 효과 및 항노화 효과를 측정하였다. 세포 독성을 평가한 결과 25, 50 및 100 μg/mL의 갈참나무 잎 추출물을 처리하였을 때 모두 독성을 나타내지 않았으며, hydrogen peroxide로 산화적 스트레스를 유도한 상태에서는 세포를 보호하여 농도 유의적으로 세포생존율이 증가하였다. 특히, 100 μg/mL의 농도에서는 양성대조군으로 사용한 50 μM ascorbic acid 수준까지 세포 생존율이 증가하였다. 세포내 항산화 효과를 확인 하기위해 사용한 H2-DCFDA assay에서는 형광현미경과 형광흡광도 측정에서 모두 농도 유의적으로 세포내 ROS 저감 활성을 확인하였고 갈참나무 잎 추출물을 100 μg/mL 농도로 처리했을 때는 50 μM ascorbic acid와 비슷한 세포내 항산화 효과를 나타내었다. 또한 SA- β-galactosidase assay를 이용한 갈참나무 잎 추출물의 피부 섬유아세포에 대한 항노화활성은 ROS 생성 억제 효과 와 유사한 경향으로 갈참나무 잎 추출물의 농도 유의적으로 세포 노화 억제효과를 확인하였다. 이상의 결과를 종 합하여 볼 때 갈참나무 잎 추출물이 hydrogen peroxide로 인한 산화적 스트레스 상태에서 세포 보호효과, 항산화 효 과 및 항노화 효과가 관찰되어 기능성 식품원료로서의 활용도가 매우 넓을 것으로 판단된다.
This study investigated the quality characteristics and antioxidant activities of Makgeolli (a traditional Korean rice wine) made with Etteum bell flower root (0.5, 1, 1.5, and 2% with steamed rice) during fermentation. The pH values of Makgeolli with Etteum bell flower root powder decreased after 3 days of fermentation and then increased after 5 days of fermentation. Sugar content decreased after 3 days of fermentation. Color evaluation showed the L values of these drinks decreased during fermentation, whereas a and b values both increased. The alcohol content of Makgeolli increased after fermentation, reaching a maximum concentration of 7.90-8.07% by the end of fermentation. Total phenolic compound contents and DPPH radical scavenging activities increased as the ratio of Etteum bell flower root increased. Sensory scores of Makgeolli fermented with 1.5% Etteum bell flower root ware greater than those of Makgeolli prepared by other treatments. Therefore, Makgeolli added with 1.5% Etteum bell flower root added considered to be the most suitable for manufacturing.
This study aims to compare and analyze a willow tree (Salix Koreensis andersson) extract’s antioxidant and antiinflammatory activity by investigating its: total polyphenol, flavonoid content, SOD-like activity, DPPH vitality. the willow tree was induced with LPS to determine its active anti-inflammatory effects. as a result, the willow methanol extract showed a higher total polyphenol and flavonoid content than those of willow distilled water extract, but the willow distilled water extract showed a higher SOD than that of willow methanol extract. in its DPPH scavenging ability, the willow methanol extract’s antioxidant activity was higher than that of the willow distilled water extract. the willow extract’s measurements such as the production of NO, inflammatory cytokine (TNF-α, IL-6 measurement) were significantly reduced as its concentration level went down. according to the research outcomes, when induced, he will extract’s macrophage produces mediator-like substances such as NO and inflammatory cytokine that can be used to alleviate the inflammatory response. therefore, the willow tree proved to be a useful raw plant material for the products designed to combat inflammatory activities due to its natural antioxidant and anti-inflammatory response substances such as NO and cytokine.
Major royal jelly proteins (MRJPs), important protein components of bee royal jelly (RJ) and exclusive nourishments for queen, exhibit various biological and pharmacological activities. RJ is one of the most studied bee products, but the crucial roles for MRJP2 as an antimicrobial and antioxidant agents remain largely unknown. Here we demonstrated the antimicrobial and antioxidant functions of the Asiatic honeybee (Apis cerna) MRJP2 (AcMRJP2). Recombinant AcMRJP2 of approximately 53 kDa was expressed in baculovirus-infected insect cells, and it exhibited antimicrobial activity against bacteria, fungi, and yeast via binding to microbial surfaces and inducing structural damage in microbial cell walls. AcMRJP2 protected mammalian and insect cells against oxidative damage through shielding of cell membranes. Interestingly, AcMRJP2 exhibited DNA protection activity and DPPH radical-scavenging activity. Altogether, our data demonstrated that AcMRJP2 functions as antimicrobial and antioxidant agents.
Honeybee (Apis mellifera) egg-yolk protein vitellogenin (Vg) plays roles in immunity, antioxidation, and life span beyond reproduction, but it also acts as an allergen Api m 12 in venom. Here we established antimicrobial and antioxidant roles of honeybee Vg in the body and venom. Using the cDNA encoding Vg identified from Asiatic honeybee (A. cerana) workers, recombinant A. cerana Vg (AcVg) protein of approximately 180 kDa was produced in baculovirus-infected insect cells. In A. cerana worker bees, AcVg was expressed in the fat body and venom gland and was present in the secreted venom. AcVg induced structural damage in microbial cell walls via binding to microbial surfaces and exhibited antimicrobial activity against bacteria and fungi. AcVg protected mammalian and insect cells against oxidative damage through direct shielding of cell membranes. Interestingly, AcVg exhibited DNA protection activity against reactive oxygen species (ROS). Furthermore, the transcript level of AcVg was upregulated in the fat body, but not in the venom gland, of worker bees with antimicrobial peptides and antioxidant enzymes in response to microbial infection and oxidative stress. Our data indicate that AcVg is involved in innate immunity upon infection and in a defense system against ROS, supporting a crucial role of honeybee Vg as an antimicrobial and antioxidant agent in the body and venom.
Tyrosinase is a key enzyme in animal melanogenic pathway that is the rate-limiting step for the production of melanin. Several synthetic and naturally occurring tyrosinase inhibitors have been studied for skin whitening, the development of natural agents is becoming more important due to the disadvantages of synthetics such as high cytotoxicity, insufficient penetration power, and low activity. The purpose of this study was to evaluate the polyphenols, antioxidant and tyrosinase inhibition activity of mealworm (Tenebrio molitor) extract and optimization of extraction condition using statically-based optimization. The results showed that extraction temperature of 92.0°C, extraction time of 36.7 min, and ethanol concentration of 79.5% provided the maximum levels of compounds of 5.69 mg GAE/g DW, tyrosinase inhibition of 78.8%, and radical scavenging activity of 100.8 μg/ml in the validation experiment.
Aronia makgeolli was manufactured using Asp. kawachi (AK) and Asp. awamori (AA) with tannase activity, and physicochemical properties were examined during the fermentation period. The pH was decreased during the fermentation period after the first day, while the acidity increased. Reducing sugars increased highly on the first day of fermentation, and then they gradually decreased as the fermentation period elapsed. On the 7th day of fermentation, it was in the range of 0.38~0.61%. The alcohol content gradually increased during the fermentation period and it ranged from 13.4~14.2 v/v% by the 7th day of fermentation, and the alcohol content of makgeolli added with Aronia was somewhat lower than that of makgeolli prepared without aronia. The L value increased as the fermentation period elapsed, and the L value of makgeolli added with aronia increased rapidly. The a value gradually decreased, while the b value gradually increased as the fermentation period elapsed. The content of total polyphenols increased during the fermentation period of AK makgeolli. However, the AA makgeolli was not significantly increased, as compared to the initial stage of fermentation, and it was lower than that of the AK makgeolli. The radical scavenging activity of the DPPH was higher in the makgeolli added with aronia, and the antioxidant activity of AA makgeolli was higher than that of AK makgeolli. In the sensory evaluation, in the AK makgeolli, the palatability deteriorated due to the bitter taste and the astringent taste derived from the aronia. However, in the AA makgeolli, astringent taste was very weak and the sensory quality was good.
This study was designed to evaluate the antioxidant activities and protective effects on PC12 cells of the extract of Epimedium koreanum and its main constituents icariin and icariside I. After screening the seven identified flavonoid glycosides from E. koreanum through DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay, E. koreanum, Icariin and Icariside I exhibited significant effect on radical scavenging activity. E. koreanum, icariin and icariside I were examined using DPPH, ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (ferric reducing ability power) assay. In all antioxidant assays, E. koreanum, icariin and icariside I showed high radical scavenging activities in a dose-dependent manner. Protective effects against H2O2-induced PC12 cells were assessed with MTT assay. The results indicated that cell viability and protection on PC12 cells of icariside I and icariin increased dose dependently. These study results suggest that E. koreanum, icariin and icariside showed high antioxidant capacities and cell protective effects. Icariside I, one of the metabolites of icariin, may be a new and effective flavonoid compound as a functional component.
This study examined the changes in antioxidant activity and contents of phenolic compounds inblanched, steamed, and autoclaved burdock root (BR). The total polyphenolic and flavonoids contents of raw and cooked BR were determined spectrophotometrically. The antioxidant activity of BR was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2- azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and oxygen radical absorbance capacity (ORAC) assays. The main phenolic compounds in BR were quantified by HPLC (high performance liquid chromatography). Both blanching and steaming treatments significantly increased the antioxidant activities of BR in all groups (5 min, 15 min, and 30 min), whereas in autoclaving treatment, the 30 min treatment only showed an increase in the antioxidant activities of BR. The 30 min blanched BR exhibited the strongest DPPH and ABTS radical scavenging activities and possessed the highest total polyphenol and flavonoid phenolic contents. The 15 min-steamed BR showed the highest ORAC value. The main phenolic compound of the 15 min-steamed BR was CGA (chlorogenic acid). These results suggest that heat cooking methods, such as blanching and steaming, improve the antioxidant activity of BR by increasing the concentration of phenolic compounds.
The change of quality characteristics and antioxidant properties of black soybean flours after germination and roasting treatment were evaluated. The moisture content of roasted black soybean flours decreased significantly according to roasting temperatures and times, and the crude ash, protein, and fat contents increased. The water binding capacity of roasted black soybean flours with and without germination increased significantly according to roasting temperatures and times; however, water solubility index and swelling power decreased. The lightness of roasted black soybean flours was significantly decreased, and the redness and yellowness increased. The phenolic compounds and radical scavenging activity of roasted black soybean flours increased with increasing roasting temperatures and times. The total polyphenol contents of roasted black soybean flours with and without germination were 5.43-7.81 and 4.52-6.17 mg GAE/g, and total flavonoid contents were 2.90-3.50 and 2.34-3.01 mg CE/g, respectively. The DPPH radical scavenging activity of roasted black soybean flours, with and without germination, was 254.98-415.05 and 171.95-295.15 mg TE/100 g, and the ABTS radical scavenging activity was 459.74-596.37 and 422.95-526.85 mg TE/100 g, respectively. As a result, it is necessary to establish quality standards for each application by considering the quality characteristics and antioxidant properties of roasted black soybean flours.
The objective of this study was to compare physicochemical, microbial, and antioxidant properties of domestic and imported wheat kernels for bread making. Two domestic (JK1, 2) and three imported (ND, DNS, and CWRS) kernels were compared. Domestic kernels had higher moisture contents, and lower ash and protein contents (p<0.05). In grain characteristics, JK1 had 13.62% of damaged kernels, which was the highest among the samples (p<0.05). JK2 was similar to imported kernels in the ratio of sound kernels, foreign materials, and damaged kernels. Kernel size of JK1, 2 was larger than the imported kernels; therefore, kernels area and perimeter were higher by the image analyzer. Domestic kernels hid lower total aerobic counts the imported kernels (p<0.05). Domestic kernels and DNS had no yeast, while NS and CWRS had yeast in kernels. DNS (3.08 mg gallic acid equivalent (GAE)/g) had the highest total polyphenol content (TPC), followed by JK1 (2.81 mg GAE/g). JK2 had the lowest amount of TPC as 2.26 mg GAE/g. Total flavonoid content (TFC) was the highest in DNS as 0.44 mg catechin equivalent (CE)/g and JK2 was the lowest as 0.12 mg CE/g. Domestic wheat kernels had lower protein content and lightness than the imported wheat kernels so that flour from domestic wheat kernels may have lower quality for baking.
In the present work, capability of thymolphthalein-grafted graphene oxide, which was successfully synthesized in this study, in stabilization of polypropylene against thermal oxidation were investigated and compared with that of SONGNOX 1010, a commercially used phenolic antioxidant for the polymer. The modified graphene oxide were incorporated into polypropylene via melt mixing. State of distribution of the nanoplatelets in the polymer matrix was examined using scanning electron microscopy and was shown to be homogeneous. Measurements of oxidation onset temperature and oxidative induction time revealed that thymolphthalein-grafted graphene oxide modifies thermo-oxidative stability of the polymer in the melt state remarkably. However, the efficiency of the nanoplatelets in stabilization of polypropylene against thermal oxidation in melt state was shown to be inferior to that of SONGNOX 1010. Furthermore, oven ageing experiments followed by Fourier transform infrared spectroscopy showed that the modified graphene oxide improves thermo-oxidative stability of the polymer strongly in the solid state, so that its stabilization efficiency is comparable to that of SONGNOX 1010.
배초향은 항동맥경화나 항박테리아의 특성을 가지는 한약재에 널리 사용되는 영년생 약용식물이다. 연구의 목적은 수경재배에서 배양액의 종류와 PPFD값에 따른 배초향의 생장 및 항산화 물질의 변화를 조사하는 것이다. 배초향은 주야간 16:8 시간의 일장조건에서 150과 200 μmol·m-2·s-1 PPFD 조건과 일본원시(HES), 서울시립대(UOS), 유럽채소연구소(EVR), 오오츠카 배양액(OTS)을 이용하여 6주간 재배하였다. OTS 배양액조 건에서 자란 배초향의 지상부 및 지하부 건물중은 다른 배양액 처리구와 비교하여 유의적으로 높았다. 배초향의 틸리아닌 함량은 OTS 처리에서 가장 높았으며 다음으로 EVR, HES, UOS 순서로 낮아졌다. 총 아카세틴의 함량은 EVR처리에서 가장 높았으나 OTS처리와는 유의적 차이를 보이지 않았다. 또한 200 μmol·m-2·s-1 PPFD 조건에서 자란 배초향은 PPFD 150처리구와 비교하여 유의적으로 생체중과 건물중이 증가하였으며 기능성 물질은 틸리아닌과 아카세틴의 함량도 높았다. 본 연구는 수경재배 방식을 이용하여 식물공장에서 배초향을 재배할 경우 200 μmol·m-2·s-1 PPFD 조건과 OTS 배양액 조건에서 경제적인 광원조건으로 최적 바이오매스 생산량과 틸라아닌과 아카세틴의 함량을 증가시킬 수 있을 것으로 제안한다.
Alpha-linolenic acid (ALA) is one of n-3 polyunsaturated fatty acids and found mainly in the chloroplasts. Many studies have been reported that intracellular reactive oxygen species (ROS) in mammalian oocytes were reduced by supplementation of ALA in in vitro maturation (IVM) medium. Based on these reports, we expected that ALA acts as an antioxidant during IVM of porcine oocytes. Therefore, the objective of this study was to investigate the antioxidant effect of ALA supplementation during IVM in porcine oocytes. The cumulus-oocyte complexes (COCs) were incubated in IVM medium containing 200 μM H2O2 or H2O2 with 50 μM ALA for 44 h. Nuclear maturation stage of oocytes was evaluated using aceto-orcein method. For measurement of oxidative stress state, intracellular ROS and glutathione (GSH) levels were measured using carboxy-DCFDA and cell tracker red, respectively. In results, oocytes in metaphase-II (MII) stage development was significantly reduced in H2O2 group compared to non-treated control group (61.84±1.42% and 80.00%, respectively; p<0.05) and it was slightly recovered by treatment of ALA (69.76±1.67%; p<0.05). The intracellular GSH levels was decreased in H2O2 groups compared with control groups, but it was enhanced by ALA treatment (p<0.05). On the contrary, H2O2 treatment increased intracellular ROS level in oocytes and H2O2-induced ROS was decreased by treatment of ALA (p<0.05). Our findings suggested that ALA treatment under oxidative stress condition improve oocyte maturation via elevated GSH and reduced ROS levels in oocytes. Therefore, these results suggest that ALA have an antioxidative ability and it could be used as antioxidant in in vitro production system of porcine embryo.