검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 157

        41.
        2014.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hydrophilic SiO2 layers were obtained by the atmospheric-pressure plasma treatment. Superhydrophobic SiO2 layers were first deposited by the electrospray deposition method. The electrospunable solution that was prepared based on the solgel method was sprayed on Si (100) substrates. The surface of the electrosprayed SiO2 layers consisted of the agglomeration of nano-sized grains, which led to a very high roughness and revealed a very high contact angle to water droplets over 162˚. After having been exposed to the atmospheric Ar/O2 plasma, the observed superhydrophobicity of the SiO2 layers were greatly changed: a dramatic variation of the water contact angle from 162˚ to 3˚, namely realization of superhydrophillicity. Interestingly, the surface microstructure was almost preserved. According to the XPS analysis, it is more likely that thanks to the plasma exposure, the surface of SiO2 layers will be cleaned in terms of organic species that are hydrophobic-inducing, consequently leading to the hydrophilic nature observed for the plasma-exposed SiO2 layers.
        4,000원
        42.
        2014.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The existing metal getters are invariably covered with thin oxide layers in air and the native oxide layer must be dissolved into the getter materials for activation. However, high temperature is needed for the activation, which leads to unavoidable deleterious effects on the devices. Therefore, to improve the device efficiency and gas-adsorption properties of the device, it is essential to synthesize the getter with a method that does not require a thermal activation temperature. In this study, getter material was synthesized using palladium oxide (PdOx) which can adsorb H2 gas. To enhance the efficiency of the hydrogen and moisture absorption, a porous layer with a large specific area was fabricated by an etching process and used as supporting substrates. It was confirmed that the moisture-absorption performance of the SiO2/Si was characterized by water vapor volume with relative humidity. The gas-adsorption properties occurred in the absence of the activation process.
        4,000원
        43.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work describes the coloration, chemical stability of SiO2 and SnO2-coated blue CoAl2O4 pigment. The CoAl2O4, raw materials, were synthesized by a co-precipitation method and coated with silica (SiO2) and tin oxide (SnO2) using sol-gel method, respectively. To study phase and coloration of CoAl2O4, we prepared nano sized CoAl2O4 pigments which were coated SiO2 and SnO2 using tetraethylorthosilicate, Na2SiO3 and Na2SiO3 as a coating material. To determine the stability of the coated samples and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Blue CoAl2O4 solutions were tuned yellow color under all acidic/basic conditions. On the other hand, the chemical stability of SiO2 and SnO2-coated CoAl2O4 solution were improved when all samples pH values, respectively. Phase stability under acidic/basic condition of the core-shell type CoAl2O4 powders were characterized by transmission electron microscope, X-ray diffraction, CIE L*a*b* color parameter measurements.
        4,000원
        44.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pt nanopowder-dispersed SiO2 (SOP) films were prepared by RF co-sputtering method using Pt and SiO2 targets in Ar atmosphere. The growth rate and Pt content in the film were controlled by means of manipulating the RF power of Pt target while that of SiO2 was fixed. The roughness of the film was increased with increasing the power of Pt target, which was mainly due to the increment of the size and planar density of Pt nanopowder. It was revealed that SOP film formed at 10, 15, 20 W of Pt power contained 2.3, 2.7, and 3.0 nm of spherical Pt nanopowder, respectively. Electrical conductivity of SOP films was exponentially increased with increasing Pt power as one can expect. Interestingly, conductivity of SOP films from Hall effect measurement was greater than that from DC I-V measurement, which was explained by the significant increase of electron density.
        4,000원
        45.
        2014.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The nitrogen solubility and nitride capacity of CaO-SiO2-Al2O3-MgO-CaF2 slag systems were measured by using gas-liquid equilibration at 1773K. The nitrogen solubility of this slag system decreased with increasing CO partial pressure, with the linear relationship between nitrogen contents and oxygen partial pressure being -3/4. This system was expected to show two types of nitride solution behavior. First, the nitrogen solubility decreased to a minimum value and then increased with the increase of CaO contents. These mechanisms were explained by considering that nitrogen can dissolve into slags as "free nitride" at high basicities and as "incorporated nitride" within the network at low basicities. Also, the basicity of slag and nitride capacity were explained by using optical basicity. The nitrogen contents exhibited temperature dependence, showing an increase in nitrogen contents with increasing temperature.
        4,000원
        46.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This manuscript reports on compared color evolution about phase transformation of α-FeOOH@SiO2 and β-FeOOH@SiO2 pigments. Prepared α-FeOOH and β-FeOOH were coated with silica for enhancing thermal properties and coloration of both samples. To study phase and color of α-FeOOH and β-FeOOH, we prepared nano sized iron oxide hydroxide pigments which were coated with SiO2 using tetraethylorthosilicate and cetyltrimethyl-ammonium bro- mide as a surface modifier. The silica-coated both samples were calcined at high temperatures (300, 700 and 1000°C) and characterized by scanning electron microscopy, CIE L*a*b* color parameter measurements, transmission electron microscopy and UV-vis spectroscopy. The yellow α-FeOOH and β-FeOOH was transformed to α-Fe2O3 with red, brown at 300, 700°C, respectively.
        4,000원
        47.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Superhydrophobic SiO2 layers with a micro-nano hierarchical surface structure were prepared. SiO2 layers depositedvia an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decoratedon the surface of the microscale-rough SiO2 layers by use of the photo-reduction process with different intensities (0.11-1.9 mW/cm2) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequentlyresulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containingtrichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical SiO2 layers. The change in surface roughness factorwas in good agreement with that observed for the water contact angle, where the surface roughness factor developed as ameasure needed to evaluate the degree of surface roughness. The resulting SiO2 layers revealed excellent repellency towardvarious liquid droplets with different surface tensions ranging from 46 to 72.3mN/m. Especially, the micro-nano hierarchicalsurface created at an illumination intensity of 0.11mW/cm2 and illumination time of 60 sec showed the largest water contactangle of 170o. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micro-nano hierarchical SiO2 layers were evaluated. The work of adhesion was estimated to be less than 3×10−3N/m for all the liquiddroplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to themicro-nano hierarchical SiO2 layers.
        4,000원
        48.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene has been synthesized on 100- and 300-nm-thick Ni/SiO2/Si substrates with CH4 gas (1 SCCM) diluted in mixed gases of 10% H2 and 90% Ar (99 SCCM) at 900˚C by using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The film morphology of 100-nm-thick Ni changed to islands on SiO2/Si substrate after heat treatment at 900˚C for 2 min because of grain growth, whereas 300-nm-thick Ni still maintained a film morphology. Interestingly, suspended graphene was formed among Ni islands on 100-nm-thick Ni/SiO2/Si substrate for the very short growth of 1 sec. In addition, the size of the graphene domains was much larger than that of Ni grains of 300-nm-thick Ni/SiO2/Si substrate. These results suggest that graphene growth is strongly governed by the direct formation of graphene on the Ni surface due to reactive carbon radicals highly activated by ICP, rather than to well-known carbon precipitation from carbon-containing Ni. The D peak intensity of the Raman spectrum of graphene on 300-nm-thick Ni/SiO2/Si was negligible, suggesting that high-quality graphene was formed. The 2D to G peak intensity ratio and the full-width at half maximum of the 2D peak were approximately 2.6 and 47cm-1, respectively. The several-layer graphene showed a low sheet resistance value of 718Ω/sq and a high light transmittance of 87% at 550 nm.
        4,000원
        49.
        2012.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silica-based ceramic-matrix composites have shown promise as advanced materials for many applications such as chemical catalysts, ceramics, pharmaceuticals, and electronics. SiO2-CuO-CeO2 multi-component powders and their thin film, using an oxalic acid template as a chelating agent, have larger surface areas and more uniform pore size distribution than those of inorganic acid catalysts. SiO2-CuO-CeO2 composite powders were synthesized using tetraethylorthosilicate, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate with oxalic acid as template or pore-forming agent. The process of thermal evolution, the phase composition, and the surface morphology of these powders were monitored by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrometry (EDXS). The mesoporous property of the powders was observed by Brunner-Emmett-Teller surface (BET) analysis. The improved surface area of this powder template with oxalic acid was 371.4m2/g. This multi-component thin film on stainless-steel was prepared by sol-gel dip coating with no cracks.
        4,000원
        50.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작은 고체 분체들은 피커링 유화 체계에서 안정화제로 작용하는 것은 이미 알려진 사실이다. 이 연구에서 우리는 알킬실란 처리 TiO2와 n-헥실알코올, 수계로 안정한 피커링 에멀젼을 제조하였다. TiO2 입자에 의해 안정화된 피커링 에멀젼을 제조하기 위한 최적의 조건은 TiO2 입자의 양과 수상/유상의 비에 의해 결정된다. 피커링 에멀젼의 형태는 물과 n-헥실알코올에 대한 입자들의 젖음성에 의존된다. 피커링 에멀젼은 TiO2가 5.00 wt%, 오일과 수상의 비가 3 : 7인 경우에 가장 안정하였다. 피커링 에멀젼을 형판으로 하여 무기 전조체를 졸-겔 공정에 의해 다공성 분체들이 합성되었다. 합성된 다공성 분체들은 광학 현미경, SEM, BET, XRD 및 EDS에 의해 확인되었다.
        4,900원
        51.
        2012.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe/SiO2 core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized SiO2 composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/SiO2 core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing FeNO3 solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/SiO2 core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.
        4,000원
        52.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후 핵연료내 우라늄 및 초우란원소를 회수하는 파이로프로세싱 공정에서 배출되는 금속염화물계 방사성 폐기물은 높은 휘발특성과 붕규산계 유리와의 낮은 상용성으로 인해 고화처리가 쉽지 않은 폐기 물이다. 이를 위해, 본 연구에서는 고화처리의 한 방법으로 탈염화 반응을 통한 고화체제조 개념을 채택 하였다. 솔젤법을 이용하여 탈염화물질, SiO2-Al2O3-P2O5 (SAP)을 합성하였으며 이를 이용하여 탈염화 반 응거동 반응생성물의 고형화 특성을 조사하였다. LiCl계 폐기물과 달리, LiCl-KCl폐기물의 반응은 두 개 의 온도범위에서 반응이 진행되며, 400℃의 경우에는 LiCl이, 약 700℃에서는 KCl이 주로 반응하는 것으 로 확인되었다. 여러 가지 반응실험을 통하여 LiCl-KCl의 탈염화 반응에 가장 적합한 물질은 SAP 1071 (Si/Al/P=1/0.75/1 in molar)인 것으로 확인되었다. 4가지 종류의 고형화 실험을 통하여 고화체의 bulk shape과 densification은 SAP/Salt의 비에 영향 받는 것을 확인하였다. 제조된 고형화 시료는 Product Consistency Test-A법을 이용하여 기본적인 내구성을 평가하였다. 본 연구는 SiO2, Al2O3, P2O5 로 이루 어진 탈염화 물질을 이용하여 반응특성과 고형화 특성에 대한 기본적인 정보를 제공하였으며, 이와 같은 실험을 통하여, 본 연구에서 제안된 탈염화 고화처리방법이 휘발특성이 높고 기존 유리매질과 상용성이 낮은 금속염화물계 폐기물에 적용이 가능함을 확인하였다.
        4,000원
        53.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        금속염화물계 방사성 폐기물은 전해공정으로 이루어진 파이로프로세싱공정의 주요한 방사성 폐기물이 다. 이와 같은 폐기물은 탄산염이나 질산염과 달리 고온에서 분해되지 않고 바로 휘발되며, 기존의 규산 계 유리와 상용성이 낮아 처리가 쉽지 않다. 본 연구팀은 금속염화물계 폐기물을 고화처리하는 방법으로 탈염화처리법을 채택하였다. 본 연구에서는 그 후속적인 연구로서, 탈염화물질로 제안된 SAP (SiO2- Al2O3-P2O5)의 조성을 변화시켜 LiCl-KCl과의 반응성을 향상시키고 고화공정을 단순화시키고자 하였다. 기본물질계에 Fe2O3를 첨가할 경우 무게반응비 SAP/Salt를 3에서 2.25로 낮출수 있으며, Fe가 Al을 치환 하는 몰분율이 0.1이상이 될 경우에는 오히려 반응성이 점진적으로 감소하는 것으로 확인되었다. 또한 M-SAP에 B2O3를 첨가할 경우에는 유리매질을 사용하지 않고 monolithic form을 제조할 수 있었다. 침출 시험결과 U-SAP 1071이 가장 높은 내구성을 보여주었으며, 1 g의 금속폐기물을 처리시 약 3∼4 g의 고 화체가 발생되며, 이는 기존의 고화처리법보다 약 ⅓∼¼배정도 최종처분부피가 감소되는 효과를 얻을 수 있다. 이상의 실험결과로부터, 기존의 유리고화공정으로 처리가 어려운 휘발성 금속염화물계 폐기물 을 단 하나의 물질을 이용하여 처리할 수 있음을 확인하였으며, 이러한 처리방법은 고화처리시 발생되는 부피를 최소화활 수 있는 대안적인 고화처리방법이 될 것으로 판단된다.
        4,000원
        54.
        2012.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A Li2O-2SiO2 (LS2) glass was investigated as a lithium-ion conducting oxide glass, which is applicable to a fast ionic conductor even at low temperature due to its high mechanical strength and chemical stability. The Li2O-2SiO2 glass is likely to be broken into small pieces when quenched; thus, it is difficult to fabricate a specifically sized sample. The production of properly sized glass samples is necessary for device applications. In this study, we applied spark plasma sintering (SPS) to fabricate LS2 glass samples which have a particular size as well as high transparency. The sintered samples, 15mmφ×2mmT in size, (LS2-s) were produced by SPS between 480˚C and 500˚C at 45MPa for 3~5mim, after which the thermal and dielectric properties of the LS2-s samples were compared with those of quenched glass (LS2-q) samples. Thermal behavior, crystalline structure, and electrical conductivity of both samples were analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and an impedance/gain-phase analyzer, respectively. The results showed that the LS2-s had an amorphous structure, like the LS2-q sample, and that both samples took on the lithium disilicate structure after the heat treatment at 800˚C. We observed similar dielectric peaks in both of the samples between room temperature and 700˚C. The DC activation energies of the LS2-q and LS2-s samples were 0.48±0.05eV and 0.66±0.04eV, while the AC activation energies were 0.48±0.05eV and 0.68±0.04eV, respectively.
        4,000원
        55.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermally stable /Pt/ core-shell nanocatalyst has been synthesized by chemical processes. Citrated capped Pt nanoparticles were deposited on amine functionalized silica produced by Stober process. Ultrathin layer of titania was coated on Pt/ for preventing sintering of the metal nanoparticles at high temperatures. Thermal stability of the metal-oxide hybrid catalyst was demonstrated heating the sample up to in air and by investigating the morphology and integrity of the structure by transmission electron spectroscopy. The surface analysis of the constituent elements was performed by X-ray photoemission spectroscopy. The catalytic activity of the hybrid catalysts was investigated by CO oxidation reaction with oxygen as a model reaction.
        4,000원
        56.
        2011.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper has relatively high technical standard and experimental skill. The fabrication of TCO film with hightransparency, low resistance and low chromaticity require exact control of several competing factors. This paper has resolvedthese problems reasonably well, thus recommended for publication. Indium tin oxide(ITO) thin films were by D.C. magnetronroll-to-roll sputter system utilizing ITO and SiO2 targets of ITO and SiO2. In this experiment, the effect of D.C. power, windingspeed, and oxygen flow rate on electrical and optical properties of ITO thin films were investigated from the view point ofsheet resistance, transmittance, and chromaticity(b*). The deposition of SiO2 was performed with RF power of 400W, Ar gasof 50sccm and the deposition of ITO, DC power of 600W, Ar gas of 50sccm, O2 gas of 0.2sccm, and winding speed of 0.56m/min. High quality ITO thin films without SiO2 layer had chromaticity of 2.87, sheet resistivity of 400ohm/square, and trans-mittance of 88% and SiO2-doped ITO Thin film with chromaticity of 2.01, sheet resistivity of 709ohm/square, and transmittanceof more than 90% were obtained. As a result, SiO2 was coated on PET before deposition of ITO, their chromaticity(b*) andtransmittance were better than previous results of ITO films. These results show that coating of SiO2 induced arisingchromaticity(b*) and transmittance. If the thickness of SiO2 is controlled, sheet resistance value of ITO film will be expected tobe better for touch screen. A four point probe and spectrophotometer are used to investigate the properties of ITO thin films.
        4,000원
        57.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zircon has excellent thermal, chemical, and mechanical properties, but it is hard to make a dense sintered product because of dissociation during the sintering process. This study analyzes how the addition of SiO2 and Al2O3 affects the mechanical properties of sintered zircon, particularly in regards to reducing the thermal dissociation and improving the mechanical properties of ZrSiO4. Zircon specimens containing different amounts of SiO2 and Al2O3 were prepared and sintered to observe how the mechanical properties of ZrSiO4 changed according to the differing amount of SiO2 and Al2O3. The ZrSiO4 that was used for the starting material was ground by ball mill to an average particle size of 3 μm. The SiO2 and Al2O3 that was used for additives were ground to an average particle size of 3 μm and 0.5 μm, respectively. Adding SiO2 resulted in transformation in the liquid phase at high temperatures, which had little effect on suppressing the thermal dissociation but enhanced the mechanical properties of ZrSiO4. When Al2O3 was added, the mechanical properties of ZrSiO4 decreased due to the formation of pores and abnormal grains in the microstructure of the sintered zircon.
        4,000원
        58.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources.The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use ofmaterials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorptionof incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap.Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the 1st and 2nd generation solarcells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using anSi quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an SiOx matrix system was investigatedand analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QDSLS) were prepared by alternating deposition of Si rich oxide (SRO; SiOx (x=0.8, 1.12)) and SiO2 layers using RF magnetronco-sputtering and subsequent annealing at temperatures between 800 and 1,100oC under nitrogen ambient. Annealing temperaturesand times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-rayphotoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at 1,100oC for onehour. Transmission electron microscopy (TEM) images clearly showed SRO/SiO2 SLS and Si QDs formation in each 4, 6, and8nm SRO layer after annealing at 1,100oC for two hours. The systematic investigation of precipitation behavior of Si QDsin SiO2 matrices is presented.
        4,000원
        60.
        2010.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In fabricating plasma display panels, the photolithographic process is used to form patterns of barrier ribs with high accuracy and high aspect ratio. It is important in the photolithographic process to control the refractive index of the photosensitive paste. The composition of this paste for photolithography is based on the B2O3-SiO2-Al2O3 glass system, including additives of alkali oxides and rare earth oxides. In this work, we investigated the density, structure and refractive index of glasses based on the B2O3-SiO2-Al2O3 system with the addition of Li2O, K2O, Na2O, CaO, SrO, and MgO. The refractive index of the glasses containing K2O, Na2O and CaO was similar to that of the [BO3] fraction while that of the SrO, MgO and Li2O containing glasses were not correlated with the coordination fraction. The coordination number of the boron atoms was measured by MAS NMR. The refractive index increased with a decrease of molar volume due to the increase in the number of non-bridging oxygen atoms and the polarizability. The lowest refractive index (1.485) in this study was that of the B2O3-SiO2-Al2O3-K2O glass system due to the larger ionic radius of K+. Based on our results, it has been determined that the refractive index of the B2O3-SiO2-Al2O3 system should be controlled by the addition of alkali oxides and alkali earth oxides for proper formation of the photosensitive paste.
        3,000원
        1 2 3 4 5