In this study, the effect of osmotic drying conditions of mangoes on hot air drying was investigated. Four different osmotic agents of 60 Brix, such as S60, SM10, HF80, and SG25, were prepared. Mango slabs were osmotically dried with the agents at a ratio of 1:4 (w/w) for up to 8 hours. SG25 showed the lowest weight reduction and moisture loss during the process. As a result of hot-air drying, all samples showed a high correlation with the Page model (0.9761~0.9997), and the required drying time of all samples that were osmotically dried was reduced compared to the non-osmotically dried group. After hot-air drying, the pH value increased according to the drying temperature. The L, a, and b values and the total polyphenol content also decreased. Through this study, the possibility of osmotic drying was confirmed to increase the efficiency of hot air drying of mangoes, which is expected to contribute to the industrial use of domestic mangoes.
This study aims to investigate the effect of drying temperatures on the quality characteristics and physicochemical properties of vegetables. Lettuce and napa cabbage were dried at 40, 50, and 60oC and analyzed for various quality indexes. Higher drying temperature induced the lower L* and higher a* and b* values of samples. Also, it resulted in lowering the rehydration ratio, pH, and total free amino acid content of dried vegetables. The outcome might be due to the damage to the internal structure of vegetables and the decomposition of free amino acids during thermal treatment. Higher drying temperatures led to higher soluble solid and total polyphenol contents due to the conversion of phenolic compounds from combined to free form during the drying process, which changed phenolic compounds from combined to free form. Consequently, samples dried at higher temperatures had higher DPPH radical scavenging ability. The final moisture content and drying time decreased as the drying temperature increased; moreover, the antioxidant activity increased. A lower drying temperature is beneficial to maintaining the chemical characteristics of crops.
This study was conducted to investigate the potential of infrared assisted air drying (IRAD) to dry dorumuk (Arctoscopus japonicus). The IRAD system is composed of a far infrared lamp, convection fan, data loggable electronic balance, and proportional-integral-differential temperature controller. The infrared lamp provided radiative energy for temperature increase and substance moisture vaporization. The convection fan removed the moisture outside the drying chamber. Various IRAD conditions were tested at 40oC & 5 m/s, 40oC &11 m/s, 50oC & 5 m/s, 50oC & 11 m/ s, 60oC & 5 m/s, or 60oC & 11 m/s. The IRAD of 40oC & 5 m/s could reduce the moisture content by 42.2 %. The IRAD of 60oC and 11 m/s could further reduce the moisture content to 16.7% within 17 h. During the IRAD test, electrical energy consumption ranged from 1.16 to 1.38 kWh which is lower than that of hot air drying. IRAD resulted in dried dorumuk with yellow color and crispy texture. In this study, IRAD showed potential for the production of high-quality, dried dorumuk products.
본 연구는 금잔화를 꽃차로 이용하기 위해 열풍 건조 처리 시간에 따른 항산화 물질함량 및 항산화 활성을 분석하고, 최적 처리 시간을 구명하기 위해 수행하였다. 식용꽃 금잔화를 60℃에서 5시간, 10시간, 15시간 열풍건조 한 뒤 Hunter value를 측정하고 95% 에탄올을 용매로 하여 추출하였다. 항산화 물질인 총 폴리페놀, 총 플라보노이드, 총 카로티노이드 함량과 DPPH radical 소거 활성을 통한 항산화 활성, 이를 통한 항산화 물질 함량과 항산화 활성 간의 상관관계를 분석하였다. 처리시간이 증가함에 따라 Hunter value L 값과 +b값이 모두 감소하는 경향을 보였으며, 15시간 처리구에서 다소 많이 감소하였다. 또한, 항산화 물질 함량을 조사한 결과, 총 폴리페놀 함량은 처리 시간에 따른 차이는 없었으나 총 플라보노이드 함량과 총 카로티노이드 함량은 5시간과 10시간 처리시 함량이 다소 높았으며, 처리 시간이 증가함에 따라 감소하여 15시간 처리시 대조구와 차이가 없는 것으로 조사되었다. DPPH radical 소거 활성 분석 결과, 5시간과 10시간 처리시 대조구보다 활성이 높았으며, 총 카로티노이드가 DPPH radical 소거 활성 간의 상관관계가 높은 것으로 나타났다(p≤0.01, r=0.610). 따라서, 열풍건조한 금잔화는 총 카로티노이드가 항산화 활성에 기여하며, 5시간 및 10시간 열풍건조 처리가 금잔화의 항산화 물질 함량 및 활성 증가에 효과적인 것으로 판단되나 식물의 열처리 가공에 있어 오랜 시간은 내부 조직 및 항산화 물질 파괴에 영향을 미칠 수 있기 때문에 금잔화 열풍 건조 처리 시 5시간이 효과적일 것으로 판단된다.
2013년 국내 시설(비닐, 유리 온실)에서 재배되는 토마토, 풋고추, 파프리카의 생산량은 총 632,315톤으로 잎, 줄기 등 발생되는 폐기물은 수확량의 약 30%에 해당되는 189,695 톤으로 추정되며 대부분 노지에 방치 유실되거나 소각 처리된다. 본 연구에서는 이 처럼 단순 폐기되는 농업폐기물을 재활용한 고형연료 제조에 필요한 건조 장치를 개발하고 실험을 통해 그 성능을 확인하고자 하였다. 연구를 위해 건조용량 100kg/hr인 실험실용 건조기를 제작하였다. 경상남도 진주시 농업기술원 온실에서 재배되는 파프리카, 토마토, 딸기, 가지, 고추 등의 부산물을 실험원료로 사용하였다. 원료성상, 원료이송방식, 송풍량, 건조온도, 건조시간에 따른 부산물 건조특성을 파악하였다. 원료를 비교적 짧게 절단하고 열풍이 배출되는 다공판위를 견인형 컨베이어로 이송시키는 형태의 경우 건조실험 결과 세절된 원료에서 추출된 내부 수분이 외부로 유출되어 원료들 사이의 공극을 채워 건조공기가 원료 층을 통과하지 못하게 하고, 특히 100℃ 이상 고온에 노출되는 경우 원료표면에 잔류하는 유출 수분이 건조되면서 막을 형성하여 내부 원료들은 전혀 건조가 되지 못하는 현상이 관측되었다. 이러한 원료내부의 공극형성 불량으로 국부적으로 공기가 통과되는 부분만 집중적으로 급격한 건조가 진행되고 공급된 건조공기 대부분이 이 부분으로 유출되어 효과적인 건조가 전혀 진행되지 못하였다. 피건조물 사이의 공극형성을 위해 원료를 절단하지 않고 수행한 건조실험 결과 송풍량 및 온도에 따라 건조속도 및 처리용량이 다르게 나타나는 것을 알 수 있었다. 특히 송풍량과 압력을 증가시킨 건조 실험결과 건조 상하층 간 불균일 건조해소 및 건조속도, 건조능력에서 연구목표치인 100kg/hr, 60%/hr를 상회하는 결과를 보였다. 특히 건조공기온도 150℃ 이하에서도 송풍량을 증가시켜서 원하는 건조작업 수행이 가능함을 확인할 수 있었다. 결론적으로 시설농업폐기물 같은 산물밀도가 작은 초본계 원료도 컨베이어형 원료이송 형태로 연속식 열풍건조가 가능함을 확인하였다.
In Korea, the daily waste production in 2015(excluding specified waste) was 404,812 tons, of which household waste accounted for 12.7%(51,247 tons/day). Total household food and vegetable waste amounted to 1,120 tons/day; of this, 70% of was ultimately used as feed or fertilizer and 30% was buried. In this study, a drying unit was developed to enable the production of solid refuse fuel using high-moisture food waste, and its performance was examined through an experiment. Thus, a laboratory pyrolysis system with a drying capacity of 500 kg/hr was manufactured. Food wastes were collected from a company cafeteria and from Changwon City and used for experiment. The drying characteristics of the food waste were examined depending on the input temperature of the drying air. The results of the food waste drying experiment showed that the total required drying time was approximately 20 hours, and the drying speed was approximately 2.90 %/hr. The drying time was five hours longer than the research target value(15 hours per batch). However, the time was approximately 16 hours when the preheating and cooling times required for the input and output were excluded, which was close to the research target value. The drying time did not show a large difference depending on the temperature of the input drying air. Drying time was 21 hours at 155℃, and thus drying operation would be possible without the use of high-temperature air(more than 200℃) when waste heat is utilized in the future. It is thought that rather than the temperature of the input air, it is the contact area between the input air and the food waste that has a significant effect on reducing the drying time.
Dehydration is the one of the simplest ways to improve the shelf-life of fruits and vegetables by reducing the moisture content. Dehydration operations are important steps in food processing industry, which involves a process of moisture removal due to simultaneous heat and mass transfer. Drying provides a longer shelf-life to the food, cheaper transportation cost, and smaller space demand during storage. Hot-air drying of hamcho pieces were carried out to compare the influence of blanching at 90℃ for 5 min as a pre-treatment on the drying kinetics at temperatures of 50℃, 60℃, and 80℃ at a constant airflow velocity of 0.66 m/s. The pretreatment had significant effects on the moisture content of the hamcho samples. In all the drying temperature selected, the blanched samples had shorter drying time than the control. Based on these comparisons it is seen that blanching treatment prior to drying could improve the drying kinetics of hamcho samples at all drying temperatures. The activation energy was calculated by plotting the natural logarithm of drying rate constant (k) versus the reciprocal of the absolute temperature. It turned out to be 36.90 and 30.76 kJ/mol for the control and blanched sample, respectively.
The aim of this research was to determine the effect of drying conditions (drying air temperature and drying time) on drying rate, effective diffusivity, and activation energy during hot-air drying of jujube slices. Jujube slices were dried in a laboratory scale convective hot-air dryer at an air temperature in a range of 50-70℃ with an air flow of 0.66 m/s. Sliced jujubes did not exhibit a constant-rate drying period and all the drying operations are seen to occur in the falling rate period. At the beginning of drying process, drying rate was very high, and drying rate continued to decrease as moisture content approached to equilibrium moisture content. It is apparent that drying rate decreases continuously with decreasing moisture content or increasing drying time. It is also noted that the drying rate increased with the increase in drying air temperature. The drying rate was more for jujube slices dried at higher temperature than the ones dried at lower temperature for the same average moisture content of the sample. Consequently, the drying time decreased at a higher drying air temperature condition. Moisture transfer from jujube slices was described by applying the Fick's diffusion model and the effective diffusivity changed between 1.354×10-10 and 2.787×10-10 m2/s within the given temperature range. Effective diffusivity increased linearly with increasing temperature. An Arrhenius relation with activation energy values of 33.22 kJ/mol for jujube slices by hot-air drying expressed the effect of temperature on the diffusivity.
In this study, we investigated the effects of pre-soaking in salt and sugar solution prior to air drying at 50℃ on the characteristics of dried apples. Pre-soaking solutions included single solutions of salt 2% and sugar 2%; and combined solutions of salt 2%+sugar 2% and salt 2%+sugar 5%, respectively. The effects of pre-soaking condition and drying were evaluated in terms of moisture content (MC), water activity, color, antioxidant activity determined by DPPH radical scavenging activity, shear force, microbial contents, and sensory evaluation of apple slices. The control sample without pre-soaking showed the most rapid drying rate; in addition, the single solutions showed higher MC and water activity after drying time of 120 min, as compared to combined solutions. In all samples, MC and water activity showed high correlation coefficients of 0.91 to 0.97; whereas, shear force was negatively correlated with MC and water activity. The single solution of salt 2% showed decrease in change of color, including L, a, and b values, and the number of aerobic bacteria during drying. In addition, highest antioxidant activity and values of sensory preferences were observed in the dried apple pre-soaked in single solution of salt 2%.
The effect of drying temperature and steaming time on the browning and antioxidant activity of dried Platycodon grandiflorum was investigated. Thirteen treatment conditions were constructed using central composite face-centered design containing 5 center points. Drying temperature and steaming time (as factors) were 45-75oC and 15-45 min. According to treatment conditions, dried Platycodon grandiflorum was assessed for color characteristic, degree of browning, total polyphenol content, and DPPH and ABTS free radical scavenging (as responses). When increasing drying temperature within a given steaming time, dried Platycodon grandiflorum exhibited decreased lightness, increased redness, degree of browning, and total polyphenol contents, and enhanced antioxidant activities. Except for total polyphenol contents and antioxidant activities, steaming time within a given drying temperature exhibited similar effects to those observed in drying temperature. However, steaming time did not likely influence total polyphenol contents and revealed the opposite trends observed for the effect of drying temperature on their antioxidant activities. The overall results suggested that drying temperature was the main factor for changes in the browning and antioxidant activity of dried Platycodon grandiflorum.
The effects of drying temperature on the drying characteristics of soybeans at the different position in the dryer with 28.1% (±0.8) of initial moisture content were studied. Drying temperatures varied at 35, 45 and 55ºC, with a constant inlet air velocity (3 m/s). The local air velocities at a position 1, 5, and 9 were 0.150 m/s (±0.012), 0.247 m/ s (±0.018) and 0.795 m/s (±0.036), respectively. The drying rate increased as the local air velocity increased from 0.150 m/s to 0.795 m/s. The cracked grain ratio increased as the drying rate increased. To prevent quality degradation of soybeans during hot-air drying, the local air velocity should be considered. Thin-layer drying models were applied to describe the drying process of soybeans. The Midilli-Kucuk model showed the best fit (R2>0.99). Based on the model parameters, the drying time to achieve the target moisture content (15%) was successfully estimated. The drying time was strongly dependent on the position in the dryer and the drying temperature.
대량생산이 가능하여 바이오매스로서 활용가능이 큰 부레옥잠의 수확 후 건조 장치를 개발하기 위한 열풍건조 특성을 분석하였다. 수확 후 절단된 원료의 경우 수분과 원료 고형분이 혼합된 죽처럼 형상화되어 공극이 불량하여 통풍건조가 불가능하였다. 절단하지 않은 원료는 공극이 비교적 잘 형성되어 통풍건조가 가능하였으며, 풍량 2 수준(33.53 m3/min, 42.58 m3/min) 건조공기 온도 3 수준(26 ∼ 28℃, 30 ∼ 32℃, 34 ∼ 37℃)으로 건조실험을 수행한 결과 건조속도는 건조공기 온도에 많은 영향을 받았으며, 부레옥잠 열분해 처리를 위한 함수율을 약 20%로 가정할 경우, 가장 적합한 건조방식은 풍량 42.58 m3/min, 건조공기온도 37℃, 풍량비 1.05 m3/min-kg인 열풍 Ⅱ 건조 방식임을 알 수 있다. 따라서 향 후 개발되는 부레옥잠 건조용 건조 장치를 설계하는 경우 건조공기온도 약 40℃ 이상, 풍량비 약 1.05 m3/min-kg 이상을 기준으로 송풍량과 공기가열 히터 용량을 결정하면 건조속도 5%/hr 이상, 최종건조함수율 20% 이하로 부레옥잠을 건조하는 것이 가능할 것으로 판단되었다.
본 연구에서는 꽁치를 냉풍건조방법으로 생산한 과메기 의 성분 변화와 세척수 처리에 따른 미생물 제어효과를 조사하였다. 건조를 하기 전 시료의 수분 함량은 56.62% 였으나 초기 수분 함량이 급격히 감소하다가 시간이 지날 수록 완만해지는 결과를 보였다. 건조 처리 전의 과메기의 색도차는 42.40이었으나 온도와 건조시간이 증가함에 따라 색도차의 값이 감소하였다. 건조를 하지 않은 대조 구의 TBA 값은 0.219였고, 모든 온도 조건에서 건조가 진행될수록 산패도가 증가하였다. 과메기의 구성아미노산을 분석한 결과, 25℃에서 36시간을 건조시킨 처리구에서 총 아미노산 함량이 가장 높았으며 40℃에서 12시간을 건조 시킨 처리구가 총 아미노산 함량이 가장 낮았다. 건조온도와 시간에 따른 과메기의 지방산 분석 결과, 주요 지방 산은 14:0, 16:0, 18:1 등이 각각 18.15~20.96%, 28.06~ 32.51%, 17.06~19.81%로 분포하였다. Chlorine dioxide 100 ppm에서 60초 동안 세척한 구에서 미생물제어 효과가 가장 우수하였으며 과메기의 위해미생물 동정한 결과, Pseudomonas sp.와 Pseudomonas putida 로 두 균주가 조사되었다.
To know proper drying condition for making a safe Sunsik, uncooked food, microbial and physicochemical characteristics of cereal dried by hot-air drying was investigated. As moisture content of 3 Sunsik samples was reduced to about 8%, protein, carbohydrate, fat and ash content of those was increased. But approximate composition of black bean, black rice and glutinous millete and black bean showed little changes during hot-air drying (30, 40, 50oC). Lightness (L value), redness (a value) and yellowness (b value) was increased after hot-air drying. In case of black rice and glutinous millet, b value and L value wasn't changed individually. When we measured a texture for 3 kinds of raw cereal for, hardness of dried cereals was lower than raw cereals. Hardness of dried cereals was increasd as drying temperature was increased. As results of mocrobiologicl experiment for 3 kinds of sunsik on hot-air drying conditions, total cell count was reduced 2 log - 3 log and other pathogenic microorganism wasn't detected except B. cereus.
The principal objective of this study was to assess the antioxidative activities of Petasites japonicus against oxidative stress in bovine brain tissue . Petasites japonicus is found with a relatively widespread distribution, and is cultivated as a culinary vegetable in Korea. Petasites japonicus samples were dried either by freeze-drying or by hot air-convection drying (80℃), then evaluated for their antioxidative activity by measuring 1-dipheny-1,2-picrylhydrazyl (DPPH) radical scavenging, and by measuring thiobarbituric acid-reactive substances (TBARS) in brain homogenates subjected to Fe2+ -mediated lipids with or without the addition of botanical extract. Hot air convection-drying resulted in a slight increase in the extraction yie1d as compared with freeze-drying. However, total phenol and flavonoid contents in freeze-dried Petasites japonicas were significantly higher than those of hot air convection-drying. Freeze-drying increased the free radical scavenging activity of Petasites japonicas, leaves, and stems by 52.6, 28.6, and 248.0%, as compared with hot air convection-drying. Additionally, the IC50 values measured by TBARS in hot air convection-dried Petasites japonicas, leaves, and stems were increased by 36.0, 31.6, and 15.9%, as compared to those of freeze-drying. Although antioxidative activity was reduced slightly by heat processing in Petasites japonicas, freeze-drying for each portion of Petasites japonicus was the most appropriate for use as a functional food and pharmaceutical material.