This study was conducted to apply with an air duct for the cooling and a utilizing cultivating method that uses the fruiting node and the defoliation to the high-temperature vertical and hydroponic cultivation of the oriental melon. The lower fruiting node (LF) was to remove all third vines generated from 5 nodes of a secondary vine. The higher fruiting node (HF) was fruiting on the third vine generated from a first node of the third vine. The direction of the stem string; upward (UW), downward (DW). Four treatment conditions were applied with the LF-UW, LF-DW, HF-UW (control), and HF-DW. The leaf age of melon leaves was measured for photosynthesis at 3 days intervals, and the fruit characteristic was conducted on 79 fruits in each treatment. The photosynthesis rate steadily increased after leaf development, reaching 20.8 μmol CO2·m-2·s-1 on the 10 days, gradually increasing to 21.3 μmol CO2·m-2·s-1 on the 19 days, and reaching 23.4 μmol CO2·m-2·s-1 on the 32 days. After that, it lowered to 16.8 μmol CO2·m-2·s-1 on the 38 days and dropped significantly to 7.6 μmol CO2·m-2·s-1 on the 47 days. As a result of the fruit characteristics by fruiting nodes, the treatments of the fruit length was 12.6-13.4 cm, respectively, which was significant, and the fruit width was 7.9- 8.6 cm, respectively, was not significant. The soluble content ranged from 12.9 to 15.7°Brix, and the significance of all treatments, and higher than of LF-DW and HF-UW. The photosynthesis rate of melon leaves was good until 32 days after leaf development, but after that, the rate decreased. As for fruit quality, it was conformed that melons can be cultivated at the LF because the fruit enlargement and soluble content dose not decrease even when set at the LF. Results indicated that those can be used for LF and defoliation in the development of vertical and hydroponic cultivation method in high-temperature season.
To elucidate how cultivation temperature affected various traits including pileus color, yield and morphology of Pleurotusspp. Main results were as follows. Pileus lightness of all cultivars of Pleurotustested became higher as cultivation temperature increased, while those of Santari, Hwang-geumsantari and Sunjung at 21oC were lower than at 18oC. Redness and yellowness of pileus decreased as cultivation temperature increased; those of chromatic pileus cultivars showed noticeable difference. Yellowness of cultivar with chromatic pileus was higher than that of cultivar with achromatic pileus. Yield was increased as cultivation temperature increased, Wonhyeung 1ho; low temperature favored cultivar showed high yield when it was cultivated at low temperature andno fruiting body at 21oC. Valid number of stipes were generally higher at 18oC, and its correlation coefficient with yield was low. Length and stipe thickness changed consistently (larger and thicker) upon cultivation temperature; the coefficient of determination(R2) 0.514 for lengthof Heuktari and 0.963for stipe thickness of Santari were high. Correlation coefficient of one trait was highly related with multiple traits. In the future, we will conduct research on the changes of expressed genes involved in the pigments for pileus color by RNA expression analysis.
High-income mushroom crops require complex farming. Therefore, we conducted a test to identify the optimum temperature for the production of antler-shaped Ganoderma lucidum using the King Oyster mushroom cultivation facility. T-N showed 0.28% of oak sawdust and 2.2% of nutritional source. The pH of oak sawdust was 6.0, indicating weak acidity, and that of rice steel was 6.6, indicating neutrality in nutrition source. Study on the quality characteristics of mushrooms showed that the number of days at 25°C were 5~6 and those at 30°C were 3~5; the representative length at 25°C was 57.5 mm and that at 30°C was 92.2 mm; the biological weight at 25 °C was 43 g, which was greater than that at 30°C.
연구는 참외 재배 지에서 흰가루병, 담배가루이 및 두점박이응애가 동시에 발생하였을 때 45, 40, 35°C (대조구)의 온도에서 측창으로 환기 처리 시, 온실 내 온 ․ 습도의 변화, 병충해 발생과 잎말림, 그리고 개화조절에 미 치는 효과를 검토하였다. 3월 3일 ‘히든파워’ 대목에 접붙여진 ‘알찬꿀’ 참외를 40cm 간격으로 격리상에 심었고, 위 에 언급한 병해충이 모든 처리구에서 발생한 6월 18일부터 7월 13일까지 처리하였다. 온실의 온도는 맑은 날에는 설정 온도 지점까지 증가되었고, 45°C 환기 처리에서 고온 고습이 약 9시간 동안 유지되었다. 주간 최고 기온과 최 저 상대습도 차이는 45°C 환기 처리에서 가장 높았다. 환기 처리 11일 후에는 흰가루병과 두점박이응애 피해가 45°C 환기 처리에서 거의 회복되었지만 40°C와 35°C에서는 그렇지 않았다. 처리 14일 후, 담배가루이와 두점박이 응애 밀도는 45°C에서 유의하게 감소하였으나 흰가루병 증상은 유의하게 감소하지는 않았다. 잎말림은 고온에서 유발되었으나 45°C에서도 심하지 않았다. 처리 26일 후, 새로 나온 줄기의 15 마디의 개화수를 조사한 결과, 45°C에 서 암꽃이 전혀 나오지 않았고 수꽃은 1.2개로 나타났다. 이상의 결과는, 고온기에 45°C의 고온에서 2-3주간 환기 처리는 온실 내부의 고온 고습을 유도하여 흰가루병, 담배가루이, 두점박이응애를 통제하고, 개화를 억제하여 참외 의 영양 생장을 회복할 수 있는 방법으로 사료되었다.
본 연구는 반밀폐형 토마토 재배 온실에서 광합성율 극대화를 위한 적정 탄산가스 시비 농도를 구명하고자 광합성 모델을 이용하여 잎의 최대 카복실화율(Vcmax), 최대 전자전달속도(Jmax), 열파괴, 잎 호흡 등을 계산하고 실제 측정값과 비교하였다. 다양한 광도(PAR 200μmol·m -2 ·s -1 to 1500μmol·m -2 ·s -1 )와 온도(20°C to 35°C) 조건에서 CO2 농도에 대한 A-Ci curve는 광합성 측정 기기를 사용하여 측정하였고, 모델링 방정식으로 아레니우스 함수값 (Arrhenius function), 순광합성율(net CO2 assimilation, An), 열파괴(thermal breakdown), Rd(주간의 잎호흡)를 계산 하였다. 엽온이 30°C 이상으로 상승하였을 때 Jmax, An 및 thermal breakdown 예측치가 모두 감소하였고, 예측 Jmax의 가장 최고점은 엽온 30°C였으며 그 이상의 온도에서는 감소하였다. 생장점 아래 5번째 잎의 광합성율은 PAR 200- 400μmol·m -2 ·s -1 수준에서는 CO2 600ppm, PAR 600-800μmol·m -2 ·s -1 수준에서는 CO2 800ppm, PAR 1000μmol·m -2 ·s -1 수 준에서는 CO2 1000ppm, PAR 1200-1500μmol·m -2 ·s -1 수준에서는 CO2 1500ppm을 공급했을 때 포화점에 도달하였다. 앞으로 광합성 모델식을 활용하여 과채류 온실 재배 시 광합성을 높일 수 있는 탄산시비 농도를 추정할 수 있을 것으로 판단된다.
본 연구는 고온기 원예작물의 안정 생산을 위해 대형 단동하우스 ‘사계절하우스’를 파프리카 재배에 활용 시 시설 내부 기상 환경 및 파프리카 품종별 생육, 수량, 품질 등을 분석하고 근권냉방 효과 등을 구명하여 파프리카 재배환경 조건을 최적화 하기 위한 기초자료로 사용하고자 수행하였다. 정식 후부터 재배 종료 시점(2020년 5-11월)까지 시설내 평균 적산광량은 12.7MJ·m -2 d -1로, 온실외부의 평균 광량인 14.1MJ·m -2 d -1의 90% 수준으로 나타났다. 일 년중 가장 기온이 높은 7-8월의 온실내 24시간 평균온도는 외기보다 3.04℃ 낮았고, 장마가 끝난 8월 12일 이후에는 평균 4.07℃ 낮게 나타났다. 시설 내 포그 냉방 가동(6월 13일) 이전 일평균 상대습도는 최저 40% (주간 20%) 수준까지 떨어져 작물재배에 적합하지 않은 상태였으나 포그를 가동한 이후 주간 상대습도는 70-85% 수준으로 증가된 것으로 나타났다. 평균 수분부족분(humidity deficit)은 포그 공급전에는 최고 12.7g/m 3 까지 상승하여 매우 건조한 조건이었으나, 포그 공급 후 고온기(7-8월)에 평 균 3.7g/m 3으로 감소하였고, 저온기(10-11월)로 갈수록 다시 증가되는 경향이었다. 주간 잔존 CO2 농도는 전체 재배기 간동안 평균 707ppm으로 나타났다. ’20년 7월 27일부터 11월 23일까지 수확한 파프리카의 품종별 상품수량(kg/10a)은 주황색 품종 ‘DSP-7054’과 황색 품종 ‘Allrounder’이 각각 14,255kg/10a와 14,161kg/10a로 다른 품종에 비해 높았고, 다음으로 주황색 ‘K-Gloria orange’, 황색 ‘Volante’, 적색 ‘Nagano’ 품종 순으로 나타났다. 사계절하우스에서 고온기(8 월)에 생산된 대과종 파프리카의 품종별 과실품질 특성을 조사한 결과, 과고, 과폭, 과실당도, 과육두께에서 품종 간 유의성이 인정되었다. 당도는 주황색 품종인 ‘DSP-7054’와 ‘Naarangi’에서 높게 나타났고, 과육두께는 황색과 주황색 품종인 ‘K-Gloria orange’와 ‘Allrounder’에서 높게 나타났다. 근권 냉방처리 기간 동안 배지내 일평균 온도는 20.7℃로 나타났고, 근권 난방처리 기간 동안 배지내 일평균 온도는 23. 4℃로 나타났다. 근권부 냉난방 처리를 통해 상품수량은 무처리구에 비해 비해 ‘Nagano’ 16.5%, ‘Allrounder’ 1.3%, ‘Naarangi’ 20.2%, 및 ‘Raon red’ 17.3% 증가하였고, 품종 전체로는 16.1% 증가하였다. 근권 냉난방처리에 의해 과실의 경도는 4개 품종 평균 5.7% 증가하였으나 다른 품질 지표에서는 유의성있는 차이가 나타나지 않았다.
본 연구는 수출용 큰느타리버섯의 선도 유지 및 저장성 증대를 위한 배지 적합 질소함량과 생육온도 조건을 설정 하고자 하였다. 배지 질소함량 1.5%, 1.8%, 2.1%, 2.4% 및 생육온도 15 ̊C, 12 ̊C, 9 ̊C 조건별로 자실체의 생육특성, 수확 후 냉장저장기간 동안의 가스농도, 자실체 품질 변화를 조사하였다. 대직경과 중량은 생육온도와 관계없이 질소함량이 높아질수록 증가하는 경향을 보였으며 병 당 중량은 12 o C, T-N 2.4% 조건에서 149.5 g으로 가장 높았다. 갓 색은 배지 질소함량과 관계없이 온도가 낮아 질수록 색도(L)가 낮아져 갓 색이 진해졌다. 저장기간에 따른 봉지 내 가스농도 변화는 9 ̊C, T-N 2.1% 조건에서 산도 농도가 가장 오래 유지되었다. 달관조사에 의한 자실체 품질평가에서 배지 질소함량에 따른 차이는 나타나지 않았고 저장기간 28일까지 이취, 변색, 부패 정도는 15 ̊C와 9 ̊C가 유사하게 나타났다.
느타리 ‘흑타리’ 품종의 배양 중 고온스트레스에 의해 발생되는 미발이 현상을 구명하기 위하여 배양온도에 따른 생육차이를 조사하였다. PDA 배지에서‘흑타리’의 적정생육온도는 23~26 ̊C였고, 균사생장속도는 ‘춘추2호’에 비하여 빠른편이었다. 병내 배지온도는 초기에 상승하여 배양 중반에 최고점에 도달한 후 온도가 하강하였다. 배양 온도가 높을수록 배양기간은 짧아졌다. 배양온도 20 ̊C 처리구에서 배양기간은 25일 정도 소요되었으며, 미발이율은 1.8%, 수량은 139.4 g/병을 나타내었다. 배양온도 24 ̊C 처리구에서 배양기간은 20일 정도 소요되었으며, 미발이율은 4.2%, 병당수량은 132.1 g/병을 나타내었다. 배양온도 16 ̊C와 28 ̊C처리구에서는 미발이율이 증가되었고 수량이 감소하였다. 이 결과를 바탕으로 농가에서 배양온도와 미발이율의 관계를 조사하였다. 배양실 온도를 18 ̊C로 설정하고 배지품온을 28 ̊C 미만으로 관리하는 농가는 미발이율이 0.3~0.8%를 나타내었다. 배양실내의 온도가 20 ̊C 이상이며 환기가 잘 이루어지지 않은 농가에서는 미발이율이 3.5% 정도 발생되었다. 배양실 온도가 19 ̊C이며 배지 최고 품온이 31.3 ̊C까지 상승하는 농가는 미발이율이 8.2%로 높게 나타났다. 배양중 병내부 온도가 28 ̊C이상 상승하고 배양실내의 환기가 잘 이루어지지 않을 경우 미발이율이 증가하고 수량이 감소되는 경향을 보였다. 결과적으로, 배양실은 배지품온이 28 ̊C 이상 상승하지 않도록 배양실 내부의 공기를 지속적으로 순환시키고, 배양공간에 맞는 최적의 배양량을 넣어 관리하여야 한다.
팽이버섯 생육용 톱밥배지 내 질소함량(1.2~1.8%)과 생육단계 중 억제기 온도(2, 4, 6 ̊C)에 따른 자실체 특성과 저장기간별 저장 특성을 조사하였다. 톱밥배지의 이화학성 분석 결과 배지 내 질소함량에 따른 pH, 탄소함량 등은 차이를 보이지 않았다. 자실체 생육 특성은 배지내 질소함량이 높아질수록 수량은 증가하는 경향을 보였다. 억제기온도의 경우 질소함량에 따라 자실체 생육에 미치는 경향이 달랐는데 질소함량이 1.28%로 낮은 T1의 경우 억 제기온도에 따른 자실체생육에 차이가 없었고 질소함량 1.5% 이상 배지에서는 억제기 온도가 낮을수록 수량과 갓, 대의 길이가 증가하는 것으로 나타났다. 저장기간에 따른 중량감소율은 배지 내 질소함량에 따른 변화는 관찰되지 않았고, 억제기 온도 4 ̊C이하에서 1.50~1.93%로 6 ̊C보다 낮은 중량감소율을 보였다. 자실체 갓 색도는 저장 31일 후 배지 내 질소함량이 높은 T3에 억제기 온도 4 ̊C처리 에서 L값 84.81, ΔE값이 6.3으로 다른 처리구에 비해 갈변도가 적은 것으로 나타났고 관능평가 또한 저장 31일 후에도 5.2점을 받아 판매 가능한 수준의 품질을 유지하였다. 하지만, 전체적인 결과를 봤을 때 배지 내 질소함량과 억제기 온도에 따른 상관관계는 나타나지 않았으며, 두 조건이 복합적으로 팽이버섯의 품질과 저장성에 영향을 끼치는 것으로 보인다. 따라서, 톱밥배지 내 질소함량 및 생육단계별 온·습도 조건에 따른 팽이버섯의 생육과 저장성 특성에 관한 추가적인 연구가 필요할 것으로 판단된다.
본 연구는 기존에 사용하여 왔고, 최근에 온습도의 정확도를 검증하였던 강제 흡출식 복사선 차폐장치(Aspirated Radiation Shield; ARS)를 이용하여 모 기업(A 회사)에서 개발한 시스템의 성능을 개선하고, ARS 장치의 풍속이 온습도에 미치는 영향에 대해서도 시험적으로 검토하였다. 그 결과를 요약하면 다음과 같다. A 회사 제품의 시스템을 개선하기 전, A 회사 시스템의 온도는 ARS 장치로 측정한 온도보다 최대 10.2℃정도 높았고, 상대습도는 20.0%정도 낮게 나타났다. 시스템을 개선한 후, 노드 1, 2의 온도 및 상대습도는 거의 일치하는 것으로 나타났다. 개선 후의 노드 2와 ARS 장치로 측정한 온도간의 최고, 평균 및 최저온도를 포함한 온도편차는 각각 0.2~0.7℃정도로써 ARS 장치가 약간 낮거나 높게 나타나는 경향이 있었다. 상대습도의 경우, 일몰 직후 ARS 장치의 상대습도가 약 10.0%정도 높게 나타나는 경향이 있었지만, 그 이외에는 평균적으로 1.9%정도 ARS 장치가 약간 낮게 나타나는 경향이 있었다. 그리고 노드 1을 최소-중간 사이, 중간-최대 사이 및 최대로 설정한 경우, 노드 1, 2의 최고, 평균 및 최저온도를 포함한 편차는 각각 0.1~0.4℃, 0.0~0.2℃ 및 0.0~0.5℃정도였다. 그리고 노드 1의 3개 측점과 ARS 장치의 최고, 평균 및 최저온도를 포함한 편차는 각각 0.2~0.5℃, 0.1~2.2℃ 및 0.1~1.1℃정도의 범위로써 풍속의 크기에 따른 온도편차는 아주 미미한 것으로 나타났다. 또한 선행연구 및 본 연구의 결과를 종합하여 보면, 온도오차를 개선하기 위한 적정 풍속은 1.0~2.0m·s-1 정도의 범위일 것으로 판단되었다.
본 연구는 기존에 사용하여 왔고, 최근에 온습도의 정확도를 검증하였던 강제 흡출식 복사선 차폐장치 (Aspirated Radiation Shield; ARS)와 모 기업(A 회사)에서 개발한 시스템으로 측정한 온습도를 비교하여 성능을 검토한 후, 시스템의 성능을 개선할 목적으로 수행되었다. 그 결과를 요약하면 다음과 같다. 딸기의 무성도가 두 계측시스템에 영향을 미친 경우를 제외하면, 전체적으로 볼 때 플레이트 2개의 시스템이 1개보다 복사선 차폐효과가 미미하지만 좋은 것으로 나타났다. 그리고 A회사의 시스템과 ARS장치로 측정한 최고온도의 전체적인 범위는 각각 20.5~53.3oC 및 17.8~44.1oC정도로써 A사 제품이 2.7~9.2oC정도 높게 나타났고, 일별 최대 편차는 12.2oC 정도였다. 평균온도의 경우, 두 기관의 전체적인 범위는 각각 12.4~38.6oC 및 11.8~32.7oC정도로써 A사 시스템이 0.6~5.9oC정도 높게 나타났고, 일별 최대 편차는 6.7oC정도 였다. 최저온도의 경우도 각각 4.2~28.6oC 및 2.9~26.4oC정도로써 A사 제품이 1.3~2.2oC정도 높게 나타났고, 일별 최대 편차는 2.9oC정도로써 두 기관의 장치로 측정한 온도에 편차가 있는 것으로 나타났다. 또한 상대습도의 경우, A회사와 ARS장치로 측정한 평균상대습도의 전체적인 범위는 각각 52.9~93.3% 및 55.3~96.5%정도로써 A회사의 시스템이 ARS장치보다 2.4~3.2%정도 낮게 나타나는 경향을 보였다. 그러나 일별로 비교하여 보면, 최대 18.0%정도 A회사의 시스템이 낮게 나타나는 날도 있었다. 결국 상대습도 도 온도와 마찬가지로 미미하긴 하지만 두 기관의 장치로 측정한 온도에 편차가 있는 것으로 나타났다.
기후 변화에 따른 표고 재배사내 온도와 습도의 변화추이를 알아보기 위하여 5년 동안 봄, 여름, 가을 기간에 걸쳐 국내 49곳의 표고버섯 재배사에서 온도와 습도를 측정 분석하였다. 톱밥배지 재배사의 5년간 평균 온도와 습도는 24.7℃와 60.5%이었다. 원목 재배사의 5년간 평균 온도는 24.4℃, 평균 습도는 60.0%로 나타났다. 여름철 기간 중 온도 평균은 원목재배사의 경우는 2016년 29.8℃, 2017년 29.1℃, 2018년 33.3℃이었으며 톱밥배지 재배사의 경우는 2016년 26.8℃, 2017년 20.4℃, 2018년 24.2℃이었다. 조사 기간 중 30℃가 넘는 고온으로 측정된 재배사는 봄철에 1곳, 여름철에 5곳이었으며 원목 재배사가 5곳을 차지하였다. 원목재배에서 온도가 20℃를 넘지 않는 재배사는 4곳으로 모두 가을에 조사된 온도였다. 본 연구 조사는 기후변화에 대비해 표고 재배사의 경우 원목 재배사 관리에 우선적으로 대비해야 함을 시사하였다.
ICT 기반 스마트 표고재배시설을 활용하여 표고재배의 과정을 후숙관리, 발이관리, 생육관리 및 휴양관리 4과정으로 나누어 6월부터 10월까지 시험을 진행하였다. 여름철 재배사 외부 25~35oC의 고온환경에서도 재배사 내부의 환경은 설정한 방향으로 제어되었다. 여름철 대표적인 재배용 품종 ‘산조701호’와 신품종 ‘산조717호’를 이용한 재배시험 결과 ‘산조701호’의 경우 353.7 g/봉, ‘산조717호’는 270.4 g/봉으로 ‘산조701호’가 높은 버섯생산성을 나타내었다. ICT 기반으로한 스마트 표고재배시설을 활용한 표고재배는 재배과정별 환경조건 설정으로 재배가 어려운 고온의 환경에서도 편리하게 재배환경 관리가 가능하였으며, 재배품종에 적합한 환경제어 범위를 연구한다면 버섯생산 안정화 및 생산성 향상에 크게 기여할 것으로 판단되었다.
Five empirical farmhouses were selected to reduce the high temperature damage in oak mushroom cultivation using bed-logs. The cultivation facilities were categorized as follows: those having two blackout curtains or one blackout curtain and outdoor oak mushroom cultivation. The inequality of the indoor condition, oak mushroom hyphae rampant ratio, and fruit body production in each test condition was evaluated. 3oC was lower in indoor temperature of cultivation facility having two blackout curtains than one blackout curtain. Specifically, the indoor air humidity average of cultivation facilities having one or two blackout curtains was 10% lower than that of outdoor oak mushroom cultivation. This condition is not ideal for oak mushroom cultivation as continuous indoor humidity control is essential for producing good fruit bodies. The Inoculated bed-log surface and oak mushroom hyphae rampant ratio of bed-logs cultivated with two blackout curtains was superior to other tested conditions. The mushroom production ratio observed in facilities with two blackout curtains was 117-204% higher than those cultivated in facilities with only one blackout curtain. Furthermore, the mushroom production ratio increased in based on these findings, we recommended five cultivation facility models to reduce high temperature damage in oak mushroom cultivation using bed-logs.
실내에서 육성된 117개 교배균주를 시험 재배하여 자실 체의 특성 및 생산성을 검정하고 결과가 우수한 07-55,07-66, 07-84, 07-93, 07-117균주를 선발하고 이들의 모균 주들과 확대 재배하여 모균주와의 생산성을 비교한 결과 각 균주의 생산성은 07-66균주가 36.1%의 회수율을 보여 가장 높게 나타났으며 07-117균주는 35.6%, 07-93균주는 27.1%, 08-84균주는 25.7%로 조사되었고 07-55균주는 가장 생산성이 낮은 6.5%로 조사되었다. 07-93 균주와 07-66균주는 생산성이 높으나 대가 긴 특성을 보였고 07- 117균주는 전체적인 자실체 품질이 다른 균주들보다 낮았 다. 또한 모균주와 교배균주간에 재배를 통한 온도형 분 석 결과 07-117균주는 고온형, 07-66 및 07-84균주는 중 온형, 07-55 및 07-93균주는 저온형으로 구분되었으며 07-93균주는 비교적 버섯발생온도범위가 넓은 가능한 균 주이나 품질이 저조하였다.
Poria cocos is an edible and pharmaceutical mushroom with a long history of medicinal use in Korea. For the last 30 years, the domestic cultivated supply of Poria cocos has been unable to meet consumer demand, so Poria cocos is collected in mountainous areas and also imported from China. Thus, to increase the supply of Poria cocos, many artificial cultivation methods have been studied. In this study, Poria cocos is cultivated under different environmental conditions using plastic bags and the results compared. When cultivating Poria cocos at different temperatures (20, 25, 30 and 35oC) and using different numbers of plastic bag layers (1, 2), the most efficient cultivation conditions were a temperature of 25-30oC and 2 plastic bag layers. The fastest growth was at 25-30oC, and the Poria cocos exhibited no weight change when cultivated using layers of plastic bags (1, 2).
표고 재배방법이 원목재배에서 톱밥재배로 전환되어가 고 있는 추세이다. 하지만 재배적기인 봄가을의 버섯생산 은 톱밥재배는 경쟁력이 매우 취약한 상태이다. 이를 개 선하기 위하여 연중재배 방안의 개발이 절실하며, 균상재 배에 대한 필요성이 높아진 상태이다. 농가 재배사의 위 치별 온도변화와 시설 및 장비에 대한 조사와 재배온도별 버섯발생 및 자실체의 형태적 특성을 조사하였다. 그 결과, 재배사 내의 온도는 외부 온도가 34 o C일 때에 내부온도는 30~31 o C이었으며, 상하단의 온도 편차는 1 o C 이내였고, 밤의 온도는 외부온도가 22~21 o C 일 때에 내부 는 22~23 o C 수준으로 1 o C 높았다. 전체적으로 보면 24 o C 미만은 버섯 발생 및 생육이 가능한 온도대의 시간은 22:30부터 아침 7:30분까지이며, 습도는 온도와는 반대로 낮에는 55~65% 내외이나 밤에는 85~95%내외를 유지하 였다. 재배사 시설들은 냉동기, 물콘, 3중막 표고재배사, 미스 트 및 포그노즐 등이었으며, 재배자들은 낮은 온도를 유 지하기 위하여 많은 노력을 하고 있었다. 봉지배배에서 혹서기에 재배가능한 온도를 확인하기 위 하여 14 o C부터 29 o C 까지 3 o C 간격으로 항온상태에서 버 섯재배사에서 재배한 결과 23 o C까지는 버섯이 발이 또는 생산되었으나 26 o C부터는 버섯생산이 불가능하였다. 버섯 품질을 결정하는 버섯 색깔과 형태적 특성변화에서 명도 값은 온도가 증가하면서 증가하였고, 대의 채도(a, b)값은 서서히 감소하였으며, 갓에서는 채도(b)값은 온도에 따른 큰 변화가 없었으나, 채도 (a)값은 감소하였다. 형태적 특 징 중에서 갓크기는 1차 수확에서는 온도 증가에 따라 서 서히 감소하였으나 2차 수확에서는 증가하였다. 대길이는 재배온도가 높아지면 대길이가 길어지며, 갓두께는 1차 수확에서는 서서히 감소하지만 2차 수확은 1차보다 빠르 게 증가하였다. 위의 내용을 종합해보면 표고톱밥 재배사내에 상하단의 온도편차가 1 o C 이내로 균상재배가 가능하며, 버섯 발생 유도기간에 온도는 23 o C 이하에서만 가능할 것이다.
온도가 수확율과 수확기간에 미치는 영향은 방임과 솎음 공히 온도가 낮을수록 발이소요일이 길었고, 수학소요일도 같은 경향을 보였다. 수확률에 있어서 13℃에서는 91%, 17℃에서는 90.3%, 15℃에서는 95.8%로 가장 좋은 결과를 보였다. 온도가 낮은 것은 발이가 불량하여 수확률이 떨어진 것이고, 17℃ 조건에서는 갈반병이 발생하여 수확률이 떨어졌다. 솎음처리구에서 품질은 생육온도가 13, 15, 17℃일때 각각 7.5, 8.1, 7.7로 15℃ 처리가 가장 우수하였고, 수확량에 있어서는 17℃ 처리에서 100.0g으로 가장 많았다. 방임처리구에서의 온도의 영향은 솎음처리구와 마찬가지 경향으로 13, 15, 17℃일때 품질은 각각 4.6, 5.9, 5.1로 15℃가 가장 우수하였다. 무게에 있어서는 15℃처리에서 107.2g으로 가장 수량이 많았다. 생육시기별 온도를 달리 적용하였을 경우, Ⅱ조건(17℃ 발이기(뒤집기전, 7~8일)→16℃원기신장기(솎기전, 4~5일)→15℃ 신장기(솎기이후))가 생육소요일수가 16일로 가장 짧았으며, 수확량도 방임의 경우 다른 처리에 비해 22.4, 9.0% 증수되었다. 솎기구의 경우 품질이 8.1로 다른 처리구 7.1과 7.9보다 우수하였다. 총생산량에 있어서는 17.4, 4.0% 많았다.
본연구는 파프리카의 양액재배시 온도와 급액의 농도가 역병균의 생장과 유주자낭 형성에 미치는 영향을 구명하고자 수행하였다. 순수 분리된 역병균의 균학적 특징에는 격막이 존재하지 않았으며 역병균의 전형적 특징인 유주자낭이 형성되는 것을 관찰하였다. 온도조건에 따른 역병균의 균사생장은 25℃에서 가장 왕성하였으며, 20℃, 30℃ 그리고 15℃ 순으로 나타났다. 급액의 농도에 따른 역병균 균사의 생장은 EC 0.5에서 1.5까지 점진적인 증가를 보였으며, EC 1.5에서 가장 빠르게 생장하는 것으로 나타났다. 반면 EC 2.0에서부터 감소하여 EC 3.5 이상에서는 균사가 전혀 생장하지 않는 것으로 확인되었다. EC 농도에 따른 역병균의 유주자낭 형성 정도는 급액의 EC 농도가 높을수록 유의성 있게 감소하였으며 EC 4.0에서는 가장 억제되었다.