High voltage impulse (HVI) has been gained attention as an alternative technique that could control the CaCO3 scale problems encountered in water main, pipe, cooling tower and heat exchanger vessels. The aim of this study was to investigate the effect of electric field (E) and contact time (t) of HVI on reduction of Ca2+ concentration at two different temperatures of 25℃ and 60℃. A kinetic model on the effect of E and t was investigated too. As the E and t increased, the Ca2+ concentration decreased more than that of the control (= no HVI). The Ca2+ concentration decreased up to 81% at 15 kV/cm at 60℃, which was nearly 2 times greater than the control. With these experimental data-set of reduction of Ca2+ concentration under different E and t, the kinetic model was developed. The relationship between E and t required to reduce the concentration of Ca2+ by 30% was modeled at each temperature. The empirical model equations were; E0.83· t = 60.3 at 25℃ and E0.08· t = 1.1 at 60℃. These equations state the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increment of E and vice versa.
Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.
High voltage impulse(HVI) has been gained attention as an alternate technique controlling CaCO3 scale formation. Investigation of key operational parameters for HVI is important, however, those had not been reported yet. In this study, the effect of temperature and applied voltage of HVI on Ca2+ concentration was studied. As the applied voltage from 0 to 15kV and the temperature increased from 20 to 60°C, the Ca2+ concentration decreased, indicating that the aqueous Ca2+ precipitated to CaCO3. The Ca2+ concentration decreased up to 81% under the condition of 15kV and 60°C. Rate constant for the precipitation reaction, k was determined under different temper1ature and voltage. The reaction rate constant under the 15kV and 60°C condition was evaluated to 66☓10-3 L/(mmol·hr), which was 5 times greater than the k of the reaction without HVI at same temperature. The increases in k by HVI at higher temperature region(40 to 60°C) was much greater than at lower temperature region(20 to 40°C), which implies temperature is more important parameter than voltage for reducing Ca2+ concentration at high temperature region. These results show that the HVI induction accelerates the precipitation to CaCO3, particularly much faster at higher temperature.
Recently, applications of high voltage impulse (hereafter HVI) technique to desalting, sludge solubilization and disinfection have gained great attention. However, information on how the operating condition of HVI changes the water qualities, particularly production of hydroxyl radical (·OH) is not sufficient yet. The aim of this study is to investigate the effect of operating conditions of the HVI on the generation of hydroxyl radical. Indirect quantification of hydroxyl radical using RNO which react with hydroxyl radical was used. The higher HVI voltage applied up to 15 kV, the more RNO decreased. However, 5 kV was not enough to produce hydroxyl radical, indicating there might be an critical voltage triggering hydroxyl radical generation. The concentration of RNO under the condition of high conductivity decreased more than those of the low conductivities. Moreover, the higher the air supplies to the HVI reactor, the greater RNO decreased. The conditions with high conductivity and/or air supply might encourage the corona discharge on the electrode surfaces, which can produce the hydroxyl radical more easily. The pH and conductivity of the sample water changed little during the course of HVI induction.
Several disposal processes for waste sludge from wastewater treatment plants such as landfill, ocean dump, incineration, reuse as fuels or fertilizers are practiced. However, ocean dumping is prohibited by international treat. New constructions of landfill sites or incineration facilities are limited by NIMBY and reuse processes are still suffering from low energy yield. Therefore, development of alternative processes for sludge disposal are currently needed. In this study, alternative technique for sludge solubilization using HVI (high voltage impulse) was suggested and verified experimentally. Sludge solubilization was carried out for 90 minutes using HVI discharge with peak voltage of 16 kV and pulse duration for 40 microsecond. About 3∼9 % of MLSS and MLVSS concentration were reduced, but the soluble COD, TN, TP of the sludge increased to 372 %, 56 % and 102 % respectively. It indicates that the flocs and/or cells of the sludge were damaged by HVI. These resulted in flocs-disintegration and cells-lysis, which means the internal matters were bursted out of the flocs as well as the cells. Thus, electrical conductivity in bulk solution was increased. All of the results verified that the HVI could be used as an alternative technique for sludge solubilization processes.
본 논문에서는 Pothead를 지지하는데 사용하는 지그의 고유진동수를 일정 범위로 제한하여 Pothead와 공진을 일으키지 않도록 하는 지그의 최적 설계안을 제시한다. 쿤 터커(Kuhn-Thucker) 조건을 적용한 최적기준법(Optimality criteria method)을 사용하여 위상 최적화를 수행하였고, 이 과정에서 유한요소 크기기 최적 형상에 미치는 영향을 검토하였다. 또한 위상 최적화 결과를 바탕으로 실험 계획법(Design of experiments)과 반응 표면법(Response surface method)을 사용하여 형상 및 치수 최적화를 수행하여 비교용 지그에 비해 전체 질량이 30% 감소되는 결과를 얻었다. 마지막으로 최적화된 지그의 내진 해석을 수행한 Pothead의 응답은 Metal Handbook에서 제시된 내진 응답을 만족하고 있다.
Pulsed electronic field(PEF) 처리에 의한 우유 단백질과 물리화학적 특성의 변화를 확인하기 위하여 원유, 탈지유, HTST, LTLT, UHT 우유를 PEF 처리하였다. 시료 중의 단백질을 SDS-PAGE로 확인하였을 때, PEF 처리에 의한 우유 단백질의 변성은 관찰할 수 없었다. Differential scanning calorimetry(DSC)로 우유 단백질의 열변성 정점 온도(Td)를 분석한 결과, 탈지유를 65oC에서 PEF 처리하였을 때 Td가 87.66oC에서 97.18oC로 증가하여 PEF 처리가 우유 단백질의 변성에 영향을 미치는 것을 확인하였다. PEF 처리에 의한 alkaline phosphatase, protease, lactoperoxidase의 잔존효소활성을 측정한 결과, 원유와 탈지유에서 alkalinephosphatase는 PEF 처리에 의해 효소활성이 감소하였다. 또한 protease와 lactoperoxidase의 활성은 PEF 처리에 의해 영향을 받지 않았다. 65oC에서 PEF 처리한 원유는 처리하지 않은 원유보다 높은 갈색도를 나타내었으나, 기타 우유는 PEF에 의한 유의적인 차이가 없었다. 우유를 PEF 처리하였을 경우 산도의 변화는 관찰되지 않았고 pH의 경우에도 PEF 처리 여부에 따라 유의적인 차이는 있었으나 크게 변화하지는 않았다.
회분식 고전압 펄스 전기장 처리에 의한 막걸리의 비가열 살균 공정 적용의 가능성을 알아보았다. 막걸리의 초기 균수는 약 2×108 CFU/mL로 전기장의 세기와 처리시간이 증가할수록 사멸율은 증가하여, 30 kV/cm, 256 pulse 처리하였을 경우 약 2 log 정도의 사멸율을 나타내었다. 고전압 펄스 전기장과 열을 병합처리하였을 경우 50oC에서 20 kV/cm, 256 pulse 처리를 한 후 8 log의 높은 사멸율을 나타내었으며, 알코올 농도를 달리하였을 경우 알코올 농도가 높아질수록 높은 사멸율을 나타내어 12%의 알코올 농도에서 4.8 log의 사멸율을 보였다. 고전압 펄스 전기장 처리한 막걸리를 4oC와 30oC에서 4주간 저장하였을 경우 무처리막걸리에 비하여 4oC에서는 pH, 산도, 미생물의 수에 변화가 거의 없었으며, 30oC에서도 적정산도나 미생물의 증가가 일정 수준이하로 억제되어 막걸리의 비가열 살균 공정으로서의 가능성을 보였다.
The purpose of this study was to assess the effects of High-Voltage Pulsed Current (HVPC) and ultrasound on adjuvant-induced arthritis in rats. Adjuvant arthritis was induced in female Sprauge-Dawley rats by the subcutaneous injection of a single dose of 1 ㎖ of Complete Freund's Adjuvant (CFA) (1 mg of Mycobacterium Butyricum suspended in 1 ㎖ paraffin oil) into the right hind paw. A randomized, parallel-groups design of 24 subjects was used. All rats were randomly assigned to control (n=8), ultrasound (n=8), and HVPC (n=8) were compared with those of injured rats. The rats in the pulsed ultrasound group were treated at 1 MHz frequency with 5 W/㎠ intensity in 1:4 mode for 5 minutes per day. The rats in the HVPC group were treated at 120 pulses per second and 50 ㎲ phase duration, 20 mA intensity for 30 min per day. Treatment was done in the left and right hind limb for 2 weeks. We evaluated clinical, radiographic, hematologic and histopathologic findings before and after treatment and obtained the following results. 1. Edema of the right hind paw was more significantly reduced in the ultrasound and HVPC groups than the control group on days 9, 12, and 14 (p<.05). Edema of the left hind paw was more significantly reduced in ultrasound and HVPC groups than the control group on days 12, 14 (p<.05). 2. WBC counts of the ultrasound and HVPC groups as compared with the control group were becoming remarkably decreased after the treatment. 3. In radiologic findings, arthritis formation was seen according to the score of arthritis, which was the highest in the control group, upon the observation of radiographs of the left and right hind paws. However, no statistically significant difference was present in the score within three groups. 4. In the histopathologic findings, ultrasound and HVPC groups had effectively suppressed erosions of articular cartilage and inflammatory cell infiltrations. Therefore, the results of the study show that rats that were treated with the ultrasound and HVPC effectively suppressed adjuvant arthritis. However, no statistically significant difference was present between the ultrasound group and the HVPC group.
The purpose of this study was to determine whether high voltage pulsed current stimulation (HVPCS) would enhance wound healing in neuropathic rabbits. Ten rabbits were assigned to either an experimental or a control group. The wounded part around the peripheral neuropathy of the experimental rabbits was stimulated for two hours twice a day for six days under the following conditions: pulse frequency 80 pps, pulse duration , and stimulation intensity 30~40 V. The results indicated that there was no difference in the wound closure between the experimental and control groups. The two groups showed similar aspects in collagen and reticulum, which were observed by colored Masson's trichome. While the rabbits in the control group had more or less thick fibers, the rabbits in the experimental group had thin and branched-shape fibers. The rabbits in the experimental group showed both strong responses in the shaping of elastic fibers and the increased aspects in fibroblast when compared with the control group.