검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 41

        1.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we performed thermal safety design of the electric module of a heat-loaded equipment with consideration of its heat dissipation performance. Initially, we calculated the heat dissipation of natural convection to choose a cooling method. Based on this, we found that some modules required forced convection and selected an air-cooling method with an outdoor temperature of 43 degrees Celsius, which is the maximum temperature in Korea. Prior to module production, we performed thermal analysis of each module and proceeded with a design to increase the thermal conductivity of the module as a primary step, and subsequently proceeded with Heat Sink design to maximize the heat dissipation performance. After considering various constraints according to the system requirements and designing the cooling path, we experimentally and analytically secured thermal safety at the operating temperature of the equipment.
        4,000원
        2.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2–7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700oC and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.
        4,000원
        3.
        2019.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above 300 oC and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.
        4,000원
        8.
        2008.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후핵연료 심지층처분에 있어서 처분용기의 건전성 확보는 내부에 적재되어 있는 사용후 핵연료로부터 방사성물질이 누출되는 것을 방지하고 격리하여 처분장의 안전성을 보증하기 위한 필수적인 인자이다. 이러한 처분용기는 심지층 처분의 목적인 방사성 독성이 인간 및 자연환경에 영향을 미치지 않도록 장기간 동안 격리하고 누출을 지연시키기 위한 공학적 방벽의 중요한 요소 중의 하나이다. 심지층 처분장 설계시 주요한 요건은 처분시스템의 안전성을 유지를 위하여 처분용기에 적재되어 있는 폐기물로부터 발생된 붕괴열로 인하여 완충재의 온도가 100를 넘지 않도록 하는 것이다. 또한, 처분용기는 지하 심부 500 m 깊이에서의 수압과 완충재의 팽윤압 등 하중에 구조적 건전성을 유지하여야 한다. 본 연구에서는 직접 처분대상으로 고려하고 있는 중수로(CANDU) 사용후핵연료에 대한 처분용기의 개선된 개념을 설정하고, 심지층 처분환경에서의 열적 및 구조적 안정성을 분석하였다. 열적 안정성 해석결과 처분터널 및 처분공 간격이 40 m, 3 m 인 경우 처분 후 37년이 경과한 후에 처분용기 표면온도가 최고 온도에 도달하며, 이때 온도는 88.9 로서 처분장 온도제한 요건(100 )에 만족하였다. 또한, 정상적인 경우와 극한 상황에 따른 하중에 대한 처분용기 구조해석 결과 안전율은 각각 2.9와 1.33 으로 나타나 심지층 처분환경에서 처분용기는 구조적 건정성을 유지하는 것으로 판단되었다.
        4,000원
        11.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to understand mechanical alloying processing of Al-Fe alloy system. The thermal stability of mechanically alloyed Al-Fe alloy was intended to be enhanced by SPS process. Various analytical techniques including particle size analysis, density measurement, micro-Vickers hardness test, SEM, TEM, and X-ray diffractometry were adopted to find optimum processing conditions for mechanical alloying and subsequent SPS and to estimate thermal stability of the prepared alloy. It was found from the treatment of mechanically alloyed Al-8wt.%Fe powder mixture that needle-shaped precipitates was formed in the Al-Fe matrix, and the alloy compact showed enhanced densification and reached its full density with little loss of its fine microstructure. After heat treatment at , it was also shown that the thermal stability of Al-8wt.%Fe alloy fabricated in the present study was enhanced, which was due to its fine microstructure developed by fast densification of SPS.
        4,000원
        12.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to Al-Fe-Cr and Al-Fe-Mo powder mixture to investigate effects of Cr and Mo addition on thermal stability of Al-Fe, and thereby to enhance its thermal stability up to . Various analytical techniques including micro-Vickers hardness test, SEM, TEM, X-ray diffractometry and corrosion test were carried out. It was found that addition of Cr and Mo to Al-Fe system played a role of grain growth inhibitor of matrix Al and some precipitates such as during SPS and subsequent heat treatment. The inhibition of grain growth resulted in increased Vickers hardness and thermal stability up to comparing to those of Al-Fe alloy system.
        4,000원
        1 2 3