This study investigates the vitrification of blast furnace slag (BFS) by adjusting the content of steel slag and the added amount of E-glass. SaEb glasses were prepared with a composition of x wt% BFS and (100-x) wt% E-glass (x = 10, 20, 30, 40, and 50). Each composition was melted in a platinum crucible under atmospheric conditions at 1,500 °C for 2 h, and transparent glasses with a transmittance exceeding 75 % were fabricated. All SaEb glasses exhibit an amorphous pattern, indicating successful vitrification. We also analyzed their optical, thermal, and physical properties, including Fourier transform infrared spectroscopy (FT-IR), glass transition temperature (Tg), and x-ray pattern. As the E-glass content increased, the glass transition temperature of blast furnace slag-based glass decreased from 765 °C to 734 °C due to the weakening of the SiO4 unit structure. In all compositions, the glass transition–crystallization temperature difference exceeded 220 °C, confirming the glasses stability for slag fiber applications. The blast furnace slag-based glass exhibits potential for application in slag fiber production, and is expected to provide fundamental data for future studies on related materials.
The development of high-performance metal filters is essential for maintaining ultra-clean environments in semiconductor manufacturing. In this study, cross-sealed honeycomb filters were fabricated using STS316L powder via material extrusion additive manufacturing (MEAM) for semiconductor gas filtration. The effects of filter geometry (4 or 9 channels) and sintering temperature (850°C, 950°C, or 1,050°C) on performance were examined. First, 4-channel and 9-channel filters sintered at the same temperature (950°C) exhibited similar porosities of 50.08% and 50.57%, but the 9-channel filter showed a higher pressure-drop (0.26 bar) and better filtration-efficiency (3.55 LRV) than the 4-channel filter (0.19 bar and 3.25 LRV, respectively). Second, for filters with the same geometry (4-channel) increasing the sintering temperature reduced porosity from 64.52% to 40.33%, while the pressure-drop increased from 0.13 bar to 0.22 bar and filtration-efficiency improved from 2.53 LRV to 3.51 LRV. These findings demonstrate that filter geometry and sintering temperature are key factors governing the trade-off between air permeability, pressure-drop, and filtration efficiency. This work provides insights and data for optimizing MEAM-based high-performance metal powder filter design.
This study examined process–structure relationships in laser powder bed fusion of Al0.1CoCrFeNi + Cu composites, focusing on densification, elemental distribution, and solidification cracking. Mechanically mixed Al0.1CoCrFeNi and Cu powders were processed across a range of laser powers (100–250 W) and scan speeds (200–800 mm/s). Increased volumetric energy density (VED) improved densification, with a plateau near 200 J/mm3 yielding ~96% relative density; however, this value was still below application-grade thresholds. At low VED, insufficient thermal input and short melt pool residence times promoted Cu segregation, while higher VED facilitated improved elemental mixing. Elemental mapping showed partial co-segregation of Ni with Cu at low energies. Solidification cracks were observed across all processing conditions. In high VED regimes, cracking exhibited a minimal correlation with segregation behavior and was primarily attributed to steep thermal gradients, solidification shrinkage, and residual stress accumulation. In contrast, at low VED, pronounced Cu segregation appeared to exacerbate cracking through localized thermal and mechanical mismatch.
The recent development of small modular reactors (SMRs) and the adoption of higher-enrichment fuels have intensified the need for advanced burnable absorbers to ensure effective reactivity control and extended fuel cycles. Among various designs, UO2 fuels with high Gd2O3 (gadolinium oxide) content provide notable benefits; in particular, they are compatible with established fabrication methods for burnable absorber fuels. However, achieving a homogeneous dispersion of Gd2O3 at high loading levels remains challenging, and the frequent occurrence of phase segregation and non-uniform microstructures can limit fuel reliability and performance. Overcoming these limitations requires an understanding of the powder characteristics and mixing behaviors during fabrication. In this study, we investigate the effects of the initial particle size and mixing method of UO2 and Gd2O3 powders on the microstructure and mixing homogeneity of high-Gd2O3-content fuels. The findings indicate that both the mixing method and the preparation state of the starting powders significantly affect the resulting microstructure and mixing uniformity.
건설 자재와 건설 폐기물의 환경적 영향에 대한 사회적 관심이 높아지고 있다. 고강도 콘크리트의 필요성이 점차 커짐에 따라, 본 연구에서는 서로 연관된 환경 문제에 대한 두 가지 잠재적 해결책을 검토하였다. 첫째는 재활용 콘크리트 골재의 사용량 증가 가능성이고, 둘째는 고로 슬래그를 시멘트로 활용(재활용)할 가능성이다. 일반적으로 재활용 골재를 사용하면 고강도 콘크리트의 강도 가 저하되는 것으로 알려져 왔다. 따라서, 본 연구에서는 재활용 골재 콘크리트의 배합비와 함량 변화를 분석하여 고층 건축에 재활용 골재가 실용적인지, 그리고 어떤 방식으로 활용되는지를 규명하고자 하였다.
Since the first introduction of plastics, the issue of recycling has been repeatedly discussed. Plastics with limited biodegradability accumulate in the soil and ocean when deposited in landfills, causing environmental problems, and when incinerated emit a large amount of carbon. In particular, polyethylene terephthalate (PET) is now an indispensable material in daily life, and the waste it generates is also significant. In response, we sought a way to use PET waste as a concrete additive. Typically, adding PET damages the physical strength of concrete, and to solve this problem, gamma ray irradiation was first applied to the PET. The overall peak intensity of the fourier transform infrared spectroscopy (FT-IR) absorption spectrum of gamma-ray-irradiated PET increased, and the surface hydrophilicity of the material increased. In addition, it was confirmed that surface roughness increased when PET was irradiated with gamma rays. The strength of concrete mixed with gamma-irradiated PET was measured, and the compressive strength increased compared to concrete mixed with non-gamma-irradiated PET, and in the case of fibrous PET, the flexural strength increased.
In this study, we analyzed the structural and mechanical properties of aluminum foams fabricated using aluminum powders of varying sizes and mixtures. The effects of sintering and pore structure at each size on the integrity and mechanical properties of the foams were investigated. Structural characteristics were examined using scanning electron microscopy and micro–computed tomography, while mechanical properties were evaluated through compression testing. The experimental results demonstrated that smaller powder sizes improved foam integrity, reduced porosity and pore size, and resulted in thinner cell walls. In combination, these effects increased compressive strength as the powder size decreased. The findings of this study contribute to the understanding and improvement of the mechanical properties of aluminum foams and highlight their potential for use in a wide range of applications.
Ti-6Al-4V alloy is widely utilized in aerospace and medical sectors due to its high specific strength, corrosion resistance, and biocompatibility. However, its low machinability makes it difficult to manufacture complex-shaped products. Advancements in additive manufacturing have focused on producing high-performance, complex components using the laser powder bed fusion (LPBF) process, which is a specialized technique for customized geometries. The LPBF process exposes materials to extreme thermal conditions and rapid cooling rates, leading to residual stresses within the parts. These stresses are intensified by variations in the thermal history across regions of the component. These variations result in differences in microstructure and mechanical properties, causing distortion. Although support structure design has been researched to minimize residual stress, few studies have conducted quantitative analyses of stress variations due to different support designs. This study investigated changes in the residual stress and mechanical properties of Ti-6Al-4V alloy fabricated using LPBF, focusing on support structure design.
Ni-based superalloys are widely used for critical components in aerospace, defense, industrial power generation systems, and other applications. Clean superalloy powders and manufacturing processes, such as compaction and hot isostatic pressing, are essential for producing superalloy discs used in turbine engines, which operate under cyclic rotating loads and high-temperature conditions. In this study, the plasma rotating electrode process (PREP), one of the most promising methods for producing clean metallic powders, is employed to fabricate Ni-based superalloy powders. PREP leads to a larger powder size and narrower distribution compared to powders produced by vacuum induction melt gas atomization. An important finding is that highly spheroidized powders almost free of satellites, fractured, and deformed particles can be obtained by PREP, with significantly low oxygen content (approximately 50 ppm). Additionally, large grain size and surface inclusions should be further controlled during the PREP process to produce high-quality powder metallurgy parts.
This study has investigated the physicochemical and sensory characteristics of muffins supplemented with 0%, 5%, 10%, 15%, and 20% roasted safflower seed powder (SSP) in order to assess its applicability as a functional ingredient in baked goods. As the SSP content increased, the pH of both the batter and the muffins significantly decreased, whereas the height, volume, and specific volume of the muffins increased. Moisture content and baking loss rate were not significantly affected. Color analysis revealed that the L* and b* values decreased, whereas the a* values and total color difference (ΔE) significantly increased with higher SSP levels. Texture profile analysis showed that the hardness, gumminess, chewiness, and resilience decreased as SSP increased, whereas springiness improved. In the sensory evaluation, the overall preference was highest for the control (7.30), followed by the SSP 15 group (5.77), thus indicating that excessive SSP addition negatively affected consumer acceptance due to a darker color and rougher texture. However, the SSP 15 formulation achieved a favorable balance between health functionality and sensory quality. These results suggest that up to 15% SSP can be effectively incorporated into muffins in order to improve their functional value without compromising product quality or consumer satisfaction.
In recent years, high-entropy alloys (HEAs) have attracted considerable attention in materials engineering due to their unique phase stability and mechanical properties compared to conventional alloys. Since the inception of HEAs, CoCrFeMnNi alloys have been widely investigated due to their outstanding strength and fracture toughness at cryogenic temperatures. However, their lower yield strength at room temperature limits their structural applications. The mechanical properties of HEAs are greatly influenced by their processing methods and microstructural features. Unlike traditional melting techniques, powder metallurgy (PM) provides a unique opportunity to produce HEAs with nanocrystalline structures and uniform compositions. The current review explores recent advances in optimizing the microstructural characteristics in CoCrFeMnNi HEAs by using PM techniques to improve mechanical performance. The most promising strategies include grain refinement, dispersion strengthening, and the development of heterogeneous microstructures (e.g., harmonic, bimodal, and multi-metal lamellar structures). Thermomechanical treatments along with additive manufacturing techniques are also summarized. Additionally, the review addresses current challenges and suggests future research directions for designing advanced HEAs through PM techniques.
In this study, the effect of build orientation on the mechanical properties of Hastelloy X fabricated by laser powder bed fusion (LPBF) process was investigated. Initial microstructural analysis revealed an equiaxed grain structure with random crystallographic orientation and annealing twins. Intragranular precipitates identified as Cr-rich M23C6 and Mo-rich M6C carbides were observed, along with a dense dislocation network and localized dislocation accumulation around the carbides. Mechanical testing showed negligible variation in yield strength with respect to build orientation; however, both ultimate tensile strength and elongation exhibited a clear increasing trend with higher build angles. Notably, the specimen built at 90° exhibited approximately 22% higher tensile strength and more than twice the elongation compared to the 0° specimen.
This study investigated the ultra-low-temperature (4.2 K) tensile properties and deformation mechanisms of stainless steel 304L manufactured via laser powder bed fusion (LPBF). The tensile properties of LPBF 304L were compared to those of conventional 304L to assess its suitability for cryogenic applications. The results revealed that LPBF 304L exhibited a significantly higher yield strength but lower ultimate tensile strength and elongation than conventional 304L at 4.2 K. The temperature dependence of the yield strength also favored LPBF 304L. Microstructural analysis demonstrated that LPBF 304L features a high density of dislocation cells and nano-inclusions, contributing to its greater strength. Furthermore, strain-induced martensitic transformation was observed as a key deformation mechanism at cryogenic temperatures, where austenite transformed into both hexagonal-closed packed (HCP) and body-centered cubic (BCC) martensite. Notably, BCC martensite nucleation occurred within a single HCP band. These findings provide critical insights into the mechanical behavior of LPBF 304L at cryogenic temperatures and its potential for applications in extreme environments.
Metal additive manufacturing (AM) facilitates the production of complex geometries with enhanced functionality. Among various AM techniques, laser powder bed fusion (LPBF) is distinguished by its precision and exceptional mechanical properties achieved via laser fusion deposition. Recent advancements in AM have focused on combining LPBF with post-processing methods such as cold rolling, high-pressure torsion, and forming processes. Therefore, understanding the forming behavior of LPBF-processed materials is essential for industrial adoption. This study investigates the stretch-flangeability of LPBF-fabricated 316L stainless steel, emphasizing its anisotropic microstructure and mechanical properties. Hole expansion tests were employed to assess stretch-flangeability in comparison to wrought 316L stainless steel. The results demonstrate that LPBF-processed samples exhibit significant anisotropic behavior, demonstrating the influence of microstructural evolution on formability. These findings contribute valuable insights into optimizing LPBF materials for industrial forming applications.
This study investigated the effect of the hatch spacing parameter on the microstructure and mechanical properties of SA508 Gr.3 steel manufactured by laser powder bed fusion (L-PBF) for a nuclear pressure vessel. Materials were prepared with varying hatch spacing (0.04 mm [H4] and 0.06 mm [H6]). The H4 exhibited finer and more uniformly distributed grains, while the H6 showed less porosity and a lower defect fraction. The yield strength of the H4 material was higher than that of the H6 material, but there was a smaller difference between the materials in tensile strength. The measured elongation was 5.65% for the H4 material and 10.41% for the H6 material, showing a significantly higher value for H6. An explanation for this is that although the H4 material had a microstructure of small and uniform grains, it contained larger and more numerous pore defects than the H6 material, facilitating stress concentration and the initiation of microcracks.
This study examined the effects of partially replacing wheat flour with roasted safflower seed powder (SSP) on brownie quality, using proportions of 0%, 5%, 10%, 15%, and 20%. The addition of SSP had no significant dose-dependent effect on pH. Although the highest moisture content was observed in SSP 20 brownies (8.48%), no significant differences were found among samples. Brownie thickness increased proportionately with the amount of added SSP. Volume and density also increased with higher SSP content. Brightness (L), redness (a), and yellowness (b) values were all highest in SSP 20 brownies, indicating that SSP content affects brownie color. Hardness exhibited an increasing trend, with the control group values at 331.38±12.85 and SSP 20 at 432.70±39.84. Sensory evaluations revealed a highest overall preference for the control group, followed by the SSP 10 group. These findings suggest that the addition of 10% SSP is appropriate for brownies.