검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,841

        1.
        2024.10 구독 인증기관·개인회원 무료
        2022년 기준 국내 폐타이어 발생량은 약 37만톤으로 그 중 88.9% 인 약 32만 9천톤이 재활용되는 것으로 조사되었다. 하지만 이 중 약 75%가 시멘트소성로용 등 열이용 분야에 사용되었다. 폐타이어는 대부분 고무와 플라스틱으로 이루어져 있기 때문에, 고온에서 분 해되면서 다양한 유해가스와 오염물질이 발생할 수 있고, 이러한 공해물질은 적극적으로 관리되지 않으면 대기오염, 수질 오염 등 다 양한 환경문제를 발생시킬 수 있다. 때문에 친환경적이고 지속적인 재활용에 대한 필요성이 대두되고 있다. 폐타이어 고무 분말을 아스팔트 혼합물의 골재 일부로 치환하여 재활용하는 접근 방식은 환경에 미치는 영향을 완화할 뿐만 아니라 천연 자원의 고갈 측면에서도 긍정적인 영향을 미치는 것으로 판단된다. 따라서 타이어분말을 아스팔트 혼합물에 적용하는 것은 환경 문제를 해결하고 자원 효율성을 높이는 두 가지 이점을 가지고 있다. 폐타이어 분말을 아스팔트 바인더와 아스팔트 혼합물에 적용할 경우 미치는 영향을 평가하기 위하여 TTI의 반사균열 저항성 시험, FN Test를 진행하였다.
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molybdenum, valued for its high melting point and exceptional physical and chemical properties, is studied in diverse fields such as electronics, petrochemicals, and aviation. Among molybdenum oxides, molybdenum dioxide stands out for its higher electrical conductivity than other transition metal oxides due to its structural characteristics, exhibiting metallic properties. It is applied as pellets to gas sensors, semiconductors, and secondary batteries for its properties. Thus, research on molybdenum dioxide compaction and pressureless sintering is necessary, yet research on pressureless sintering is currently insufficient. This study synthesized MoO₃ powder via solution combustion synthesis and reduced it using the 3% hydrogen/argon gas mixture to investigate the effect of reduction temperature on the powder. Additionally, the reduced powder was compacted and subjected to pressureless sintering with temperature as a variable. The density and the microstructure of brown parts were analyzed and discussed.
        4,000원
        3.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzed the influence of ball size and process control agents on the refinement and dehydrogenation behavior of TiH2 powder. Powders milled using ZrO2 balls with diameters of 0.1 mm, 0.3 mm, and 0.3+0.5+1 mm exhibited a bimodal particle size distribution, of which the first mode had the smallest size of 0.23 μm for the 0.3 mm balls. Using ethanol and/or stearic acid as process control agents was effective in particle refinement. Thermogravimetric analysis showed that dehydrogenation of the milled powder started at a relatively low temperature compared to the raw powder, which is interpreted to have resulted from a decrease in particle size and an increase in defects. The dehydrogenation kinetics of the TiH2 powder were evaluated by the magnitude of peak shift with heating rates using thermogravimetric analysis. The activation energy of the dehydrogenation reaction, calculated from the slope of the Kissinger plot, was measured to be 228.6 kJ/mol for the raw powder and 194.5 kJ/mol for the milled powder. TEM analysis revealed that both the milled and dehydrogenated powders showed an angular shape with a size of about 200 nm.
        4,000원
        4.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study explored the process-structure-property (PSP) relationships in Ti-6Al-4V alloys fabricated through direct energy deposition (DED) additive manufacturing. A systematic investigation was conducted to clarify how process variables—specifically, manipulating the cooling rate and energy input by adjusting the laser power and scan speed during the DED process—influenced the phase fractions, pore structures, and the resultant mechanical properties of the samples under various processing conditions. Significant links were found between the controlled process parameters and the structural and mechanical characteristics of the produced alloys. The findings of this research provide foundational knowledge that will drive the development of more effective and precise control strategies in additive manufacturing, thereby improving the performance and reliability of produced materials. This, in turn, promises to make significant contributions to both the advancement of additive manufacturing technologies and their applications in critical sectors.
        4,000원
        5.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to present primary data for the development of functional beverages by measuring quality characteristics and antioxidant properties and preparing coffee with dried fruit powder. The pH, water content, and brownness were higher in the control group than in the fruit-added sample group. Total polyphenols were highest in the Prunus Fruit Coffee (PFC) at 2765.43±87.03 mg GAE/L. In terms of DPPH, the fruit addition group (consisting of dried apple, dried cherry, and dried plum) was higher than the control group, and the LFC was the highest at 70.04±2.01%. ABTS showed high antioxidant properties in all sample groups, and LFC showed the highest content at 83.01±1.06%. Caffeine was the highest in the control group, all sample groups showed lower content than the control group, and AFC showed the lowest content at 664.70±16.36. As a result, the fruit-added coffee groups are higher than the control groups in terms of quality characteristics and antioxidant properties, and it is considered that the fruit groups are suitable as functional food materials when developing coffee products.
        4,000원
        6.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, chemical properties and functional ingredients of ginger and ginger pomace discarded after juice were analyzed. Ginger and ginger pomace were subjected to hot air drying, steaming, followed by hot air drying, soaking in vitamin C for 1 hour and 3 hours. When soaked in vitamin C for 3 hours, the moisture content was highest at 9.2% for ginger and 7.3% for ginger pomace. Among inorganic ingredients, the potassium (K) content was high at 2,633.6 mg% in hot air-dried ginger after steaming and at 1,584.3 mg% in ginger pomace. Total flavonoid content of ginger pomace was high at 67.3 mg/g when soaked in vitamin C for 3 hours. Gingerol content was the highest at 9.8 mg/g when ginger was dried with hot air. It was 10.5 mg/g in ginger pomace. After ginger pomace was steamed and dried with hot air, shogaol content was as high as 2.0 mg/g.
        4,000원
        7.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sprout products, such as broccoli, alfalfa, and cabbage, have positive health effects. Thus far, sprout foods have attracted attention owing to their good bioavailability. In particular, young broccoli sprouts exhibit anti-inflammatory, antioxidant, and anti-cancer effects. They contain 100 times more chemoprotective substances than adult broccoli. This study examined the anti-inflammatory effects of freeze-dried young sprout broccoli (FD-YB) in vitro using RAW264.7 macrophage cells. The FDYB powder antioxidant ability test showed that the radical-scavenging activity and superoxide dismutase enzyme activity increased in a dose-dependent manner. In addition, FD-YB was not cytotoxic to RAW264.7 cells, and nitric oxide production decreased after the FD-YB treatment of lipopolysaccharide-stimulated RAW264.7 cells in a dose-dependent manner. Furthermore, FD-YB significantly decreased the expression of inflammation-related proteins (Cyclooxygenase-2, Inducible nitric oxide synthase, and Prostaglandin E Synthase 2) and cytokines (Tumor necrosis factor- and Interleukin-6). In conclusion, FD-YB can be a potential nutraceutical for preventing and regulating excessive immune responses during inflammation.
        4,000원
        8.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the influence of incorporating chestnut inner shell powder (CISP) at varying levels (0%, 3%, 6%, 9%, and 12% w/w) on the quality, antioxidant potential, and consumer preference of garaetteok, a Korean rice cake. Findings revealed a decrease in moisture content and pH with increasing CISP content. Color analysis indicated a reduction in lightness (L) and yellowness (b) values, while redness (a) values increased. Textural properties displayed an increase in hardness, chewiness, and gumminess, but a decrease in springiness, adhesiveness, and cohesiveness with increasing CISP levels. Sensory evaluation for appearance, taste, flavor, texture, and overall preference revealed the sample containing 6% CISP to be the most favorable. Moreover, the antioxidant activity of the garaetteok exhibited a positive correlation with increasing CISP content. In conclusion, incorporating 6% CISP resulted in improved quality characteristics for garaetteok development, offering enhanced nutritional value, antioxidant properties, and overall consumer preference.
        4,000원
        9.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, in order to develop an foaming tablet product using yuzu powder, yuzu powder was manufactured using different drying methods such as freeze-drying, 60℃ drying, and 40℃ drying, and then quality characteristics and functionality were analyzed. The naringin content per g of yuzu powder was 8.9 mg for freeze-drying and 8.8 mg for 60℃ drying, and the hesperidin content per g of yuzu powder was highest at 53.6 mg for freeze-drying and 46.2 mg for 60℃ drying. followed by 40℃ drying (41.7 mg). The tyrosinase inhibitory activity of 60℃ dried powder was found to be twice as high as that of freeze dried powder. Accordingly, in order to develop an inner beauty product, foaming tablets were manufactured using hot air dried powder, and the quality characteristics and functional ingredients of the final foaming tablets were investigated. The foaming tablet prepared with yuzu powder content of 10 and 15% showed an inhibitory activity of tyrosinase of 73.7 %, which was 1.6 times higher than that of ascorbic acid (1 mM), which was a positive control, confirming its melanin production inhibition effect.
        4,000원
        12.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to predict the process window of laser powder bed fusion (LPBF) for printing metallic components, the calculation of volumetric energy density (VED) has been widely calculated for controlling process parameters. However, because it is assumed that the process parameters contribute equally to heat input, the VED still has limitation for predicting the process window of LPBF-processed materials. In this study, an explainable machine learning (xML) approach was adopted to predict and understand the contribution of each process parameter to defect evolution in Ti alloys in the LPBF process. Various ML models were trained, and the Shapley additive explanation method was adopted to quantify the importance of each process parameter. This study can offer effective guidelines for fine-tuning process parameters to fabricate high-quality products using LPBF.
        4,000원
        13.
        2024.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 °C for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 μA in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.
        4,000원
        14.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of revolution speed and ball size in planetary milling on the microstructure and dehydrogenation behavior of TiH2 powder. The particle size analysis showed that the large particles present in the raw powder were effectively refined as the revolution speed increased, and when milled at 500 rpm, the median particle size was 1.47 μm. Milling with a mixture of balls of two or three sizes was more effective in refining the raw powder than milling with balls of a single size. A mixture of 3 mm and 5 mm diameter balls was the optimal condition for particle refinement, and the measured median particle size was 0.71 μm. The dependence of particle size on revolution speed and ball size was explained by changes in input energy and the number of contact points of the balls. In the milled powder, the endothermic peak measured using differential thermal analysis was observed at a relatively low temperature. This finding was interpreted as the activation of a dehydrogenation reaction, mainly due to the increase in the specific surface area and the concentration of lattice defects.
        4,000원
        15.
        2024.04 구독 인증기관·개인회원 무료
        The steamed and freeze-dried mature silkworm powder (SMSP) is developed by the Rural Development Administration (RDA) in 2012. In here, the nutritional components of SMSP produced by rearing white-silk cocoon silkworm, Baekokjam, at high temperatures were compared and analyzed with those produced under optimal temperature conditions of 25°C. The weight of silkworms reared in a high-temperature environment increased compared to that under an optimal condition. However, when the silkworms matured, the difference in weight according to temperature conditions narrowed. As for the growth rate, the 5th instar silkworms grew a day earlier in a high-temperature environment than in an optimal. SMSPs produced in a high-temperature environment showed a difference when comparing the nutritional components with the SMSPs in an optimal condition. Overall, high-temperature-reared SMSPs contained about twice as high carbohydrates and slightly lower protein and fat than the optimal-reared SMSPs. These results show that SMSPs produced in a high-temperature environment have a difference in growth rate and nutritional composition from those produced under an optimal condition.
        16.
        2024.03 구독 인증기관·개인회원 무료
        2022년 기준 국내 폐타이어 발생량은 약 37만톤으로 그 중 88.9%인 약 32만 9천톤이 재활용되는 것으로 조사되었다. 하지만 이 중 약 75%가 시멘트소성로용 등 열이용 분야에 사용되었다. 폐타이어는 대부분 고무와 플라스틱으로 이루어져 있기 때문에, 고온에서 분 해되면서 다양한 유해가스와 오염물질이 발생할 수 있고, 이러한 공해물질은 적극적으로 관리되지 않으면 대기오염, 수질 오염 등 다 양한 환경문제를 발생시킬 수 있다. 때문에 친환경적이고 지속적인 재활용에 대한 필요성이 대두되고 있다. 폐타이어 고무 분말을 아스팔트 혼합물의 골재 일부로 치환하여 재활용하는 접근 방식은 환경에 미치는 영향을 완화할 뿐만 아니라 천연 자원의 고갈 측면에서도 긍정적인 영향을 미치는 것으로 판단된다. 따라서 타이어분말을 아스팔트 혼합물에 적용하는 것은 환경 문제를 해결하고 자원 효율성을 높이는 두 가지 이점을 가지고 있다. 폐타이어 분말을 아스팔트 바인더와 아스팔트 혼합물에 적용할 경우 미치는 영향을 평가하기 위하여 DSR, BBR, MSCR 등의 시험 을 진행하였으며, 아스팔트 혼합물 내 폐타이어 분말의 분포를 조사하기 위해 SEM을 실시하였다. 또한 IDEAL-CT와 IDEAL-Rutting 시 험을 통해 아스팔트 혼합물의 성능을 평가하였다.
        17.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBFprocessed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.
        4,000원
        18.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식용곤충인 갈색거저리 유충이 식품 대체원료로써 식육에 대한 대체 가능성을 타진하고자 갈색거저리 유충 분말을 대체하지 않은 제품을 대조구로 설정하고 1%, 2%, 3% 비율로 대체한 유화소시지를 처리구로 하여 4±1℃에서 1, 8, 15, 22, 29일간 저장하면서 이화학적 특성과 관능적 특성 변화를 측정하였다. 갈색거저리 유충 분말을 첨가한 처리구의 pH는 대조구보다 증가하였고, 보수성(WHC)은 저장기간에 따라 대조구와 처리구 간 유의적인 차이는 크게 나타나지 않았으나, 대체량이 많을수록 보수성이 더 우수하였다(p<0.05). 휘발성 염기태질소(VBN), 지방산패도(TBARS) 는 대조구보다 감소하였으며, 관능검사의 경우 대조구와 유의적 차이가 나타나지 않았다(p<0.05). 따라서, 처리구가 대조구보다 우수한 품질과 저장성을 가지고 있었으며, 기호적인 측면에서도 뒤처지지 않아서 갈색거저리 유충 분말로 식육을 대체하는 것이 가능하다고 판단되어 식용곤충을 식품 대체원료로 제품화하였을 때, 식용곤충에 대한 거부감을 완화하고 소비자들에게 있어 긍정적인 인식의 변화를 이끌어낼 수 있는 기초자료를 제시할 수 있었다.
        4,000원
        19.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400oC. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.
        4,000원
        20.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since their initial development in 2012, triboelectric nanogenerators (TENGs) have gained popularity worldwide as a desired option for harnessing energy. The urgent demand for TENGs is attributed to their novel structural design, low cost, and use of large-scale materials. The output performance of a TENG depends on the surface charge density of the friction layers. Several recycled and biowaste materials have been explored as friction layers to enhance the output performance of TENGs. Natural and oceanic biomaterials have also been investigated as alternatives for improving the performance of TENG devices. Moreover, structural innovations have been made in TENGs to develop highly efficient devices. This review summarizes the recent developments in recycling and biowaste materials for TENG devices. The potential of natural and oceanic biowaste materials is also discussed. Finally, future outlooks for the structural developments in TENG devices are presented.
        4,000원
        1 2 3 4 5