Growing demand for edible flowers that combine aesthetic appeal and functional benefits has prompted research on light-based strategies to improve their quality. This study examined the impact of varying blue (B) light exposure on morphological traits, antioxidant activity, and phytochemical accumulation in two Viola cultivars with different petal sizes. Plants were cultivated under a 12-h daily photoperiod, with irradiation duration via white (W) and B LEDs varied among treatments (W12+B0, W8+B4, W4+B8, and W0+B12) while maintaining constant light intensity. Results indicated that prolonged B light exposure significantly increased plant height and flowering rate, particularly in the smaller-petaled cultivar “Delta Beaconsfield” (DB), and also enhanced anthocyanin accumulation and ABTS-based antioxidant activity. Conversely, the cultivar “Delta Trueblue” exhibited higher total phenolic and flavonoid levels under mixed W+B light illumination and showed stronger DPPH radical scavenging capacity. Notably, DB retained elevated chlorophyll levels under monochromatic B light, suggesting a unique photoadaptive or light-harvesting mechanism. The cultivars differing responses across assays highlight variation in light-regulated synthesis of hydrophilic and lipophilic antioxidants. These findings emphasize the potential of spectral manipulation, especially through B light, to improve the functional value of edible Viola flowers.
A new oak mushroom cultivar Lentinula edodes ‘Eomjisong’ (LE23734), was developed by crossing the dikaryotic and monokaryotic strains of ‘KME36298’ and ‘KME36288-1’, respectively. The optimal temperature for mycelial growth of ‘Eomjisong’ on potato dextrose agar was 23–27°C, and was 15–20°C for fruiting body development. The cultivation period of ‘Eomjisong’ was 131 days, which was 3 days shorter than that of the control cultivar ‘Hanacham’. Morphologically, ‘Eomjisong’ showed stipe length and thickness similar to those of ‘Hanacham’, however, the pileus was larger and thicker. Furthermore, the pileus of ‘Eomjisong’ exhibited higher brightness than that of ‘Hanacham’. Productivity tests showed that the total yield of ‘Eomjisong’ reached 555 g, which was approximately 25.6% higher than that of ‘Hanacham’ (442 g). These findings indicate that ‘Eomjisong’ is a promising cultivar with enhanced productivity and morphological advantages over ‘Hanacham’, suggesting its potential for commercial cultivation.
In this study, we analyzed the contents of different bioactive compounds, including those with antioxidant activity, in selected mushroom species. Analysis of DPPH radical-scavenging activity revealed that Agaricus bisporus(‘A15’) had the highest antioxidant efficacy at 33.1 μg/mL, followed by Lentinula edodes and Pleurotus ostreatus, for which we also recorded high values. The results of nitrite-scavenging activity analysis revealed L. edodesto have the highest value at 15.8 μg/mL, with A. bisporus, P. ostreatus, and Wolfiporia extensaalso showing relatively good results. Furthermore, our analysis of total polyphenol contents indicated that A. bisporus had the highest content at 13.7 μg/mL, with L. edodesand Flammulina filiformis similarly having high levels, whereas W. extensa was established to contain the highest levels of β-glucan at 32.6 μg/mL, followed by L, edodes and P; ostreatus, which were also found to have significantly high values. These findings indicate that the antioxidant and nitrite-scavenging capacities and polyphenol and β-glucan contents differ according to fungal species. Among the evaluated species, given its high contents of a range of bioactive compounds, A. bisporus was assessed to be a suitable candidate for functional food development, Our findings in this study will provide essential basic data for the development of functional foods using edible mushroom species.
본 연구는 겐타마이신(GEN)을 돼지에 경구 투여한 다 음, 돼지 식용조직 내 GEN의 잔류농도를 조사하였으며, 돼지 식용조직에서 GEN의 적정 휴약기간을 설정하였다. 총 42마리의 건강한 돼지에게 체중 kg 당 1 . 1 mg (GEN- 1, n=20)과 2.2 mg (GEN-2, n=20)의 GEN을 하루에 한 번씩 3일 동안 연속적으로 경구투여하였다. 약물 투여 후, 1, 3, 5, 7, 14일째에 각각 돼지 4마리로부터 조직 시료를 채취하였다. 돼지 조직 내 GEN 잔류농도는 액체크로마토 그래피-질량분석법(LC-MS/MS)을 사용하여 측정하였다. 본 연구에, 확립한 LC-MS/MS의 상관계수는 0.9961에서 0.9996 사이였으며, 검출한계(LOD)와 정량한계(LOQ)는 각 각 0.003-0.008 mg/kg과 0.01-0.025 mg/kg이었다. 근육, 간, 신 장 및 지방 조직에서의 회수율은 각각 55.51-73.15%, 69.65- 78.21%, 66.56-83.29%, 96.76-107.74%였으며, 변이계수는 모두 11.16% 이하였다. GEN-1과 GEN-2 모두에서 근육, 간, 지방 시료 내 GEN 농도는 약제 투여 종료 후 1일째 에 LOQ 이하로 나타났다. 그러나 두 그룹 모두에서 신장 시료에서는 약제 투여 종료 후 7일째까지 LOQ 이상으로 GEN이 검출되었다. 유럽의약청(EMA)의 식용조직에 대한 휴약기간 설정 지침에 따라서, GEN-1과 GEN-2의 돼지 조 직 내 휴약기간은 각각 2일 및 9일로 설정되었다. 이상의 결과로부터, 본 연구에서 확립된 분석법은 돼지 조직 내 GEN 검출에 적합하며, 설정된 GEN의 휴약기간은 돼지 식용조직 제품의 안전성 확보에 기여할 것으로 판단된다.
This study was conducted to reset the withdrawal time (WT) for amoxicillin (AMX) in pigs as a part of positive list system (PLS) program introduction. Forty-two healthy pigs were orally administered with AMX at doses of 10 mg/kg body weight (BW) (AMX-1, n=20) and 20 mg/kg BW (AMX-2, n=20), twice daily for 5 days, respectively. After the treatment, tissue samples were collected from four pigs at 1, 3, 5, 7 and 14 days post-administration, respectively. Based on a previously established analysis method, residual AMX concentrations in pig tissues were determined using LC-MS/MS. In both AMX-1 and AMX-2 groups, AMX levels in all tissues except fat was below the limit of quantification (LOQ) at one day after the final administration. According to the European Medicines Agency’s guideline on determination of withdrawal periods, the withdrawal periods for AMX-1 and AMX-2 in fat tissue were established as 0 and 2 days, respectively. In conclusion, the estimated WT of AMX in edible tissues of pigs is shorter than the current WT recommendation of 5 days for AMX.
This study aimed to evaluate the nutritional composition of various edible and medicinal mushrooms and assess their potential as alternative food sources in response to increased meat consumption, which poses environmental and health risks. The crude protein, crude fat, carbohydrate, dietary fiber, and vitamin C contents of 17 edible and medicinal mushroom species, including Flammulina velutipes, Pleurotus ostreatus, Pleurotus eryngii, Agaricus bisporus, Lentinula edodes, and Wolfiporia extensa, were systematically analyzed. Pleurotus ostreatus‘Suhan 2’ and P. eryngii‘No. 2’ showed high crude protein and carbohydrate contents, suggesting excellent potential as alternative protein and energy sources. Flammulina velutipesvarieties ‘TO22’ and ‘Aram’ exhibited relatively high crude fat contents, whereas P. eryngii‘No. 2’ and P. ostreatus‘Suhan 2’ had high vitamin C levels, suggesting a beneficial role in immune enhancement. In contrast, the medicinal mushroom W. extensa had relatively low protein and dietary fiber contents, limiting its potential as an alternative protein source compared to the other edible mushrooms. Nonetheless, it may provide other health benefits. The present study provides foundational data for the utilization of mushrooms as sustainable alternative food resources, supporting efforts to mitigate environmental impacts of meat production and improve dietary health.
식품의 가공 및 조리에 정제 가공유지를 사용하면 2- monochloropropane-1,3-diol esters (2-MCPDEs), 3-monochloropropane- 1,2-diol esters (3-MCPDEs)와 glycidyl esters (GEs)가 다양한 유형의 식품에 포함될 수 있다. EU뿐만 아니라 최근 대만에서는 식용 혹은 식품가공원료로 공급 하는 시중 판매 식용유지에 대해 GEs 1 mg/kg 이하, 홍콩 에서는 3-MCPDEs에 대해 영유아 분유 50 μg/kg 이하, 영 유아 액상 분유 6 μg/kg 이하로 기준·규격을 관리하고 있 다. 최근 다양한 한국 식품의 수출이 확대되고 있어 많은 식품에 사용되는 식용유지류의 국외 기준·규격에 대한 검증이 필요하다. 본 연구는 시중에서 판매되고 있는 식용유 지류 샘플을, AOAC Cd 29a-13 방법 및 EFSA 방법을 참 고하여 GC/MS를 사용하여 시험법을 검증하고, 지방산 유 래 유해물질(2-MCPDEs, 3-MCPDEs 및 GEs)을 분석하였다. 분석 결과, 시험법의 결정계수(r²) 평균은 0.9999, 검출한계 (limit of detection, LOD)와 정량한계(limit of quantification, LOQ)는 각각 9.6-20.4 μg/kg와 29.0-62.0 μg/kg이었다. Intraday 및 inter-day 정확도는 2-MCPDE 93.07%±9.58%- 107.92% ±5.19%, 3-MCPDE 92.14%±11.05%-108.60%±2.86% 및 GEs 87.68%±9.32%-105.66%±8.50%이었고, 정밀도는 각각 5.91- 11.72%RSD, 2.63-11.99%RSD 및 7.50-12.96%RSD로 AOAC 가이드라인에 적합함을 확인하였다. 또한 Food Analysis Performance Assessment Scheme (FAPAS) 국제 숙련도 시험 에 참가하여 적합한 z-score를 얻었으며, Quality Control (QC) material의 회수율은 89.16-108.14%로, 외부 및 내부 검증을 통해 분석 결과의 신뢰성을 확보하였다. 확립된 시험법을 토대로 시판 중인 식용유지류(n=272)를 분석한 결과, 2- MCPDEs는 N.D.-1,753 μg/kg, 3-MCPDEs는 N.D.- 2,492 μg/kg, 그리고 GEs는 N.D.-985 μg/kg이었으며, 이는 EU 기준·규격에 적합한 수준이었다. 샘플의 특성에 따라 liquid oil과 semi-solid oil로 구분하였으며, 지방산 유래 유 해물질 검출 결과가 EU 기준·규격에 근접(90-100%)한 샘 플은 각각 3-MCPDEs는 3개, 13개이고, GEs는 1개, 6개 로, liquid oil보다 semi-solid oil에서 근접하는 샘플이 더 많았다. 따라서 본 연구는 국내 유통 중인 식용유지류의 지방산 유래 유해물질을 모니터링함으로써 식용유지류의 안전 확보를 위한 기초자료로 활용되고, 수출품목 유지 및 기업체 저감화 연구에 기여할 수 있을 것으로 기대된다.
산화적 스트레스는 활성산소의 과도한 생성으로 인해 발생하며, 이는 만성퇴행성질환의 원인으로 알려져 있다. 본 연구에서는 식용 덖음 꽃차 8종 추출물의 폴리페놀 및 플라보노이드 함량, radical 소거 활성 측정을 통해 이들의 항산화 활성을 확인하고자 하였다. 8종의 식용 꽃차 에탄올 추출물 중에서 생강나무(Lindera obtusiloba, LO), 산수유(Cornus officinalis, CO) 및 카모마일(Matrecaria chamomilla) 꽃차 추출물의 총 폴리페놀 함량은 각각 20.21, 13.39, 12.39 mg gallic acid equivalent/g의 수치를 나타내었으며, 총 플라보노이드 함량은 LO, CO, 및 매화(Prunus mume) 꽃차 순으로 높은 수치를 나타내었다. 8종의 식용 꽃차 에탄올 추출물은 10, 25, 50, 100 μg/mL의 농도에서 2,2-diphenyl-1-picrylhydrazyl (DPPH) 및 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) 라디칼 소거 활성을 농도 의존적으로 증가시켰다. 특히, LO와 CO 꽃차 추출물은 다른 꽃차 추출물에 비해 우수한 DPPH 라디칼 소거 활성을 보였다. 또한 100 μg/mL 농도에서 CO, LO, 및 목련(Magnolia kobus) 꽃차 추출물의 ABTS+ 라디칼 소거 활성이 70% 이상의 수치를 나타내어 우수한 ABTS+ radical 소거 활성을 나타내었다. 본 연구 결과를 통해 식용 덖음 꽃차는 radical 소거 활성 및 폴리페놀과 플라보노이드를 함유함에 따라 항산화 활성을 나타냄을 알 수 있었으며, 특히 다른 꽃차 추출물에 비해 LO와 CO의 폴리페놀과 플라보노이드 함량 및 radical 소거능이 우수하여 항산화 기능성 소재로 활용될 수 있을 것으로 사료된다.
This study examined the physicochemical and mechanical properties of edible composite films made of cellulose nanofiber (CNF) and shellac (Sh). All films were conditioned at 25℃ and 53% relative humidity (RH) for at least 48 h before analyses. Increasing the Sh ratio from 0% to 100% resulted in an increase in film thickness from 57.8 μm to 71.1 μm, while opacity decreased significantly from 22.3 mm⁻¹ to 3.7 mm⁻¹. With the increase in the Sh ratio, the moisture content, water solubility, and swelling of the film increased from 9.7% to 35.1%, 4.9% to 100%, and 3.0% to 10.5%, respectively. The CNF film (0% Sh) exhibited a lower water contact angle than the films with 80% and 100% Sh, but it was more water-resistant. As the Sh ratio increased, the tensile strength, yield stress, Young’s modulus, and work of break of the films decreased significantly from 17.9 MPa to 0.3 MPa, 1.00 MPa to 0.38 MPa, 220.7 MPa to 0.9 MPa, and 0.67 MJ/m3 to 0.13 MJ/m3, respectively. Conversely, the elongation at break increased dramatically from 10% to 253%. This study demonstrated that the thickness, opacity, moisture-related properties, and mechanical properties of CNF-Sh composite films could be tailored by varying the biopolymer ratio.
From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for tiamulin (TML) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with TML at the concentration of 25 g/L (TML-1, n=24) and 50 g/L (TML-2, n=24) for 5 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 1, 2, 3 and 5 days, respectively. According to the previously established analysis method, residual TML concentrations in poultry tissues were determined using LC-MS/MS. In TML-1, TML in all tissues was detected less than LOQ at 2 days after drug treatment. In TML-2, TML in liver and kidney was detected more than LOQ at 2 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of TML-1 and TML-2 in poultry tissues were established to 0 and 2 days, respectively. In conclusion, the estimated WT of TML in poultry tissues is shorter than the current WT recommendation of 5 days for TML in broiler chickens.
The objective of this study was to investigate the anticancer effects of EMPS (edible mushroom mycelium polysaccharide: Tremella fuciformis) in animal models with colorectal cancer induced by AOM/DSS. The experimental groups consisted of Nor (normal), NC (AOM/DSS), EMPS (EMPS 50, EMPS 100), and PC (Fluorouracil). The NC group had the highest number of colon tumors, whereas it was observed that tumor occurrence was significantly reduced in the EMPS consumption group. The expression of Bcl-2, an apoptosis inhibitor, was significantly lower in the EMPS 50 & 100 and PC groups. On the other hand, the mRNA gene expression of Bax, a factor that induces apoptosis, was significantly higher in the EMPS 50 & 100 and PC groups compared to the NC group. The mRNA expression levels of TNF-α and COX-2 significantly increased in the NC group, but showed a significant decrease in the EMPS and PC groups, indicating inhibition of the cancer-promoting response of cells. At the phylum level of the mice's intestinal microbial composition, the proportion of Bacteroidetes tended to decrease, while the proportion of Firmicutes tended to increase with EMPS administration. This suggests that changes in the gut microbiota caused by inflammation can be influenced by dietary intake.
Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 °C for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 μA in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.
식용곤충은 미래식량 자원으로써 우수한 가치를 지니고 있어 해외에서는 사육자동화, IoT 및 AI 기술적용, 수직재배시스템 구축 등 많은 연구가 진행되고 있지만 국내에서는 대규모 사육농가나 곤충스마트팜 기술개발 이 부족하여 이를 위한 AI/빅데이터 인프라 구축이 시급한 실정이다. 학습용 인공지능 데이터는 식용곤충으로 활용되고 있는 장수풍뎅이, 흰점박이꽃무지, 갈색거저리, 백강잠, 메뚜기, 풀무치의 생애 주기별 총 6종의 RGB 사진데이터와 분광이미지 데이터 408,000장을 구축하였으며 온도, 습도, CO,, 암모니아, 조도, 수분 등 환경 데이 터 200,000세트를 수집하였다. 수집된 데이터는 원시데이터 수집, 원천데이터 가공, 라벨링 데이터 결합, 가공데 이터 검수 등을 통해 만들어졌으며 관련 데이터는 AI Hub(www.aihub.or.kr)에서 다운받을 수 있다. 확보된 식용곤 충 6종의 데이터는 곤충 종별 성장단계, 환경 변수에 따른 최적의 사육환경 조성, 생산시기 예측, 스마트대량사육 시스템 개발, 제품 가공시 추적이력제 도입, 식용곤충 스마트팜 기술 개발 및 연구 등 다양한 분야에 활용될 수 있을 것으로 예상된다.
Plastics are widely used in industries in human society and because of their structural stability, degradation is a serious global issue. To estimate the degradation of plastic, 31 edible mushrooms were cultured with the selected plastic films (polyethylene [PE], polystyrene [PS], and poly(ethylene terephthalate) [PET]) for 3 months at 25 °C. Measuring the weight of the films showed that four species of mushrooms, namely Porostereum spadiceum, Ganoderma lucidum, Coprinellus micaceus, and Pleurotus ostreatus, exhibited the highest degrees of plastic degradation. In addition, the mushrooms and fungi that exhibited the most significant plastic degradation were cross-cultured to promote this degradation. As a result, cross-cultivation of G. lucidum and Aspergillus niger showed a weight loss of 2.49% for the PET film. For the PS film, Aspergillus nidulans showed a weight loss of 4.06%. Cross-cultivation of A. nidulans and C. micaceus, which showed a weight loss of 2.95%, was noted as an alternative for PS biodegradation, but is harmful to humans. These bio-degradation effects of edible mushroom will contribute to the development of alternatives for eco-friendly plastic degradation.
This study was conducted to reset the maximum residue limit (MRL) for didecyldimethylammonium chloride (DDAC) in broiler chickens. The disinfectant containing DDAC (10%, w/w) was diluted 160 times and evenly sprayed on the bodies of twenty-four broiler chickens at a rate of 15 mL per day per bird for 7 days. After the disinfectant treatment, tissue samples were collected from six broiler chickens at 0.25, 1, 3 and 5 days, respectively. Residual DDAC concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient (0.99 >), the limits quantification (LOQ, 2.0~10.0 μg/kg), recoveries (86.9~118.6%), and coefficient of variations (<19.98%) were satisfied the validation criteria of Korean Ministry of Food and Drug Safety. In all tissues except for liver, DDAC was detected more than LOQ at 5 days after the disinfectant treatment. In liver tissues, DDAC was detected more than LOQ at 3 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal period of DDAC in poultry tissues was established to 26 days. In conclusion, the developed analytical method is sensitive and reliable for detecting DDAC in poultry tissues. When DDAC disinfectant is sprayed on a poultry house in the presence of broiler chickens, it is necessary to keep the disinfectant from contacting the body of the livestock.
This study was performed to investigate antioxidant and anti-inflammatory activities of perilla(Perilla frutescens L.) seed, flower and leaf according to extraction condition. Perilla seed extracts(PSE), perilla flower extracts(PFE), perilla leaf extracts(PLE) was extracted by stirring extraction (STE, 25°C), shaking extraction (SHE, 80°C), and sonication assisted extraction(SAE, , 25°C) with 94% ethanol, 60% ethanol and distilled water, followed by analysis of total polyphenol and flavonoid and testing radical scavenging activities. The highest total polyphenol content (5.47, 9.36, 38.58 mg gallic acid equivalent/g), total flavonoid content(5.77, 8.62, 46.44 mg catechin equivalent/g), ABTS(10.68, 19.46, 63.56 mg trolox equivalent/g) and DPPH(6.51, 7.69, 79.73 mg trolox equivalent/g) radical scavenging activity of PSE, PFE and PLE was observed in the HWE with 60% ethanol,. Among the three extraction method, SHE provided the best results for yield, polyphenol, flavonoid content of perilla seed, flower, leaf in comparison to STE or SAE. SHE with 60% ethanol of perilla seed, flower, leaf more effectively inhibited secretion of nitric oxide(NO) and pro-inflammatory cytokine in RAW 264.7 macrophage exposed to LPS compared to other extraction solvent and method. Therefore, these extracts obtained from perilla seed, flower, leaf could be used antioxidant and anti-inflammatory ingredients in the food industry.
This study investigated ethopabate (EPB) residues in edible tissues of broiler chickens given in drinking water and established the withdrawal time (WT) of EPB in poultry tissues. Twenty-four healthy Ross broiler chickens were orally administered with EPB at the concentration of 3.8 mg/L for 14 days (EPB-1, n=24) and 15.2 mg/L for 7 days (EPB-2, n=24) through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 0, 1, 3, and 5 days, respectively. EPB residue concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient values ranged from 0.9980 to 0.9998, and the limits of detection and quantification (LOQ) were 0.03~0.09 and 0.1~0.3 μg/kg, respectively. Mean recoveries in muscle, liver, kidney and skin/fat tissues were 95.9~109.8, 108.7~115.3, 89.9~96.6 and 86.7~96.8%, respectively, and coefficient of variations were less than 17.11%. At the end of the drug-administration period (0 day), EPB was detected at levels under the LOQ in all tissues from both the EPB-1 and EPB-2 groups. According to the results of EPB residue in Ross broiler tissues, withdrawal periods of both EPB-1 and EPB-2 in poultry tissues were established to 0 day. In conclusion, the developed analytical method is suitable for the detection of EPB in poultry tissues, and the estimated WT of EPB in poultry tissues will contribute to ensuring the safety of Ross broiler chickens.