The anaerobic digestion process produces methane while stabilizing sludge. As of 2020, 62 anaerobic digesters in public wastewater treatment plants are operational in Korea. Many researchers have studied to improve digester performance. Thermal hydrolysis technology is one of the pre-treatment methods for treating sludge. Reduced retention time and enhanced biogas production are the main advantages of sludge disintegration at relatively high temperatures and pressures. But nutrients like nitrogen and phosphorus are released from the pre-treated sludge. Phosphorus is a non-renewable resource that is essential to food production. Wastewater receives 20% of the total phosphate discharge, while 90% of the influent phosphorus load is in sludge. For efficient phosphorus recovery, it is essential to comprehend the phosphorus release characteristics during wastewater treatment, including anaerobic digestion. Biological or chemical processes can achieve phosphorus removal to comply with the effluent discharge limits regulations. The three primary sources of phosphorus in sludge are aluminum-bound phosphorus (Al-P), polyphosphate in phosphorus-accumulating organisms (PAOs), and iron-bound phosphorus (Fe-P). Anaerobic digestion is the typical method for recovering carbon and phosphorus. However, previous research has demonstrated that most phosphorus in anaerobic digestion occurs as a solid phase coupled with heavy metals. Therefore, the poor mass transfer rate results in a slow phosphorus release. Due to the recent growth in interest and significance of phosphorus recovery, many researchers have studied to improve the quantity of phosphorus released into the liquid phase through chelation addition, process operation optimization, and disintegration using sludge pre-treatment. The study aims to investigate characteristics of the phosphorus release associated with the thermal hydrolysis breakdown of sludge and propose a method for recovering phosphorus in a wastewater treatment plant. When solubilizing sludge using thermal hydrolysis pre-treatment, organic phosphates, inorganic phosphates, and polyphosphates are converted into ortho-phosphate. Therefore, applying thermal hydrolysis, anaerobic digestion, and phosphorus recovery processes (struvite formation or microbial electrolysis cells) can recover carbon and phosphorus.
Coffee is the most popular beverage in the world and various pollutants, including volatile organic compounds (VOCs), are emitted from the coffee manufacturing workplace (roasting process). In this study, we analyzed the characteristics of VOCs emissions from roasted Arabica coffee bean powder using a VOCs emission chamber with a PTR-ToF-MS. The emission test was maintained under constant temperature (20 ± 2oC) and humidity (50 ± 5%) conditions. As a result of the emission test, most of the target compounds had a high concentration in the initial period, and decreased emissions as time lapsed. Acetaldehyde showed the highest concentration and was initially 78 ppm during the test period. Acetaldehyde was followed by propionic acid at 61 ppm, propanal at 51 ppm, and isobutanal at 50 ppm. As a result of comparing the occupational exposure limits (OELs) of individual VOC emitted during the coffee roasting process, the OELs of four substances, including acetaldehyde, propionic acid, acetic acid, and pyridine were identified. Of all four substances, only pyridine exceeded the OELs, and the other compounds had levels of 10% to 30% of the OELs.
Asphalt concrete(Ascon) is used to repair potholes and cracks. Special truck-mounted cargo boxes transport 200℃ asphalt concrete to repair potholes and cracks. However, long working and transportation hours to repair wide roads decrease the temperature of the asphalt concrete inside the cargo boxes. If the asphalt concrete temperature drops below 170℃, the adhesion with roads that need repair decreases. Therefore, the temperature of the asphalt concrete needs to be maintained for a long time. Conventional asphalt concrete cargo boxes are mostly burner-type models using hot air to prevent the temperature of the asphalt concrete from dropping. However, there are significant temperature differences between the asphalt concrete near and far away from the hot air, so the temperature decreases over time and leads to the disposal of large amounts of asphalt concrete. This causes waste of resources and environmental pollution. Therefore, this study proposed a heat dissipation cut-off type cargo box model to solve this problem and demonstrated its performance over conventional burner-type models through tests and analysis.
Recently, there has been growing interest in harmful substances released from household items such as volatile organic compounds (VOCs) and this has increased people’s environmental awareness. In this study, adhesives and manicures were used as samples of indoor household goods and formaldehyde emission and tested over time under temperature conditions of 15oC, 25oC, 35oC, and 45oC. The small chamber method as the indoor air quality process test method was employed and used to evaluate the concentration of formaldehyde emissions. As a result, formaldehyde emissions gradually decreased over time in both tests using adhesives and manicures. The cumulative emission showed a logarithmic function over time, and the formaldehyde can be released for longer periods of time at lower temperature conditions. The logarithmic value and response time showed linear relationships, and it can be inferred that the formaldehyde was released from the sample through the first order reaction. Furthermore, the relationship between temperature and velocity constants which was determined using the Arenius linear equation showed that the reaction rate of formaldehyde can be estimated by a temperature change.
The purpose of this study is to investigate the ELF-MF emissions from UCLs and to compare the ELF-MF emission levels of HVTLs and UCLs. In addition, this study proposes a method and management plan to investigate the effects of exposure to ELF-MF emissions from UCLs. The ELF-MF emissions from the 154 kV UCL were 15.4±24.4 (GM: 7.8)mG, while from the 345 kV line they were 6.0±2.4 (GM: 5.7)mG. Through the comparison between ELF-MF emissions of 154 kV UCL and HVTL, at about 20 m distance from an overhead line the emissions level is 4 mG, while from an underground line at about 10 m distance the emission level was recorded as less than 4 mG. Through comparing the ELF-MF emission amount of the UCL according to the burial method, it was found that the direct ELF-MF emission levels are 15.3±7.4 (GM: 13.9)mG at the direct point, in the conduit type 21.0±30.4 (GM: 10.8)mG, and in the buried form 8.5±12.3 (GM:5.1)mG. In this study, ELF-MF emissions were about 37.0% and 47.5% lower, respectively, compared with the direct power and conduit type. The correlation between ELF-MF emission (mG) and power load (A) was analyzed. The higher the power load, the higher the ELF-MF emission. The correlation between ELF-MF emission at the direct point and depth of the UCL was also analyzed, and it was found that as the depth of line burial increased, ELF-MF emissions decreased.
New three emitting compounds, AK-1, AK-2 and AK-3 including diazocine moiety were synthesized through Suzuki-coupling reaction. Physical properties such as optical, electroluminescent properties were investigated. UV-visible spectrum of AK-1, AK-2 and AK-3 in film state showed maximum 392, 393 and 401 nm. PL spectrum of AK-1, AK-2 and AK-3 showed maximum emission wavelength of 472, 473 and 435 nm. Three compounds were used as EML in OLED device: ITO/2-TNATA (60 nm)/NPB (15 nm)/EML (35 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). AK-3 OLED device showed C.I.E value of (0.18, 0.26) and luminance efficiency of 0.51 cd/A at 10 mA/cm2. New derivatives including diazocine moiety were introduced as OLED emitting material and the EL efficiency was increased by the proper combination of core and side group.
There has been growing concern over the emissions of formaldehyde and VOCs from automotive interior materials, as these could have an important impact on the in-vehicle air quality (IVAQ) of automotive vehicles. Odor, the components of which may include VOCs, refers to the automotive interior smell emitted directly or indirectly from any part of an automotive interior, based on human olfactory senses and a comfort evaluation of vehicle quality. The objective of this paper is to compare the instrument analysis with the sensory characteristics of an odor using GC/MS/Olfactometry. From the test, it was possible to identify the cause of odor, which can be difficult to distinguish among multiple odors, through the simultaneous performance of instrumental analysis and sensory evaluation.
There has been growing concern over the emissions of formaldehyde and VOCs from automotive interior materials, as these could have an important impact on the in-vehicle air quality (IVAQ) of automotive vehicles. Odor along with VOCs refers to the automotive interior smell emitted directly or indirectly from any part of an automotive interior, based on human olfactory senses and a comfort evaluation of vehicle quality. The objective of this paper is to compare the odor intensity using GC/MS analysis method and odor sensory test in accordance with ISO 12219-2. For the compounds having low odor threshold value and high VOC concentration, it was found that there was the same tendency in each field of odor whether the instrument analysis method or the odor sensory test method was used.
The purpose of this study is to investigate the level of ELF-MF emissions from underground cable lines near daycare centers in the metropolitan city of Seoul. We investigated 143 daycare centers from June to September of 2015. In addition, the rate of reduction of ELF-MF levels according to the distance from the line was calculated using simulations. The ELF-MF emission level of 143 daycare centers at boundary point was 1.37 ± 1.75 mG (GM: 0.75 mG) and at direct point was 11.14 ± 17.99 mG (GM:6.05 mG). ELF-MF levels at direct point were 8.13 (arithmetic mean) and 8.06 (geometric mean) times higher, respectively, than that at the boundary point. By analyzing the relationship between ELF-MF and electricity current (A) and operating depth (m), a significant correlation was found between ELF-MF and current (A) and depth (m), at 0.360 (p<0.01) and -0.303 (p<0.05), respectively. The results of the simulation showed that appropriate separation distances showing below 4 mG was 8m and 14m, adjusted mean current (A) and maximum current (A), respectively. The results of the study suggest that a plan should be implemented for the management of ELF-MF in High voltage power-line and Underground cable line areas, through a broad and detailed survey and risk communication.
본 연구는 감성의류용 탄화지르코늄 함유 축열 니트의 원적외선 특성을 연구하였다. 탄화지르코늄 함유 축열 PET 원사가 이성분 방사법에 의해 방사되었다. 이 원사의 core부에는 고점도 PET와 탄화지르코늄을 혼합한 용액을, sheath부에는 저점도 PET 용액을 사용하여 콘쥬게이트 방사를 실시하였다. 이들 방사된 원사의 원소분석과 원적외선 특성 분석이 EDS와 FT-IR 계측기기에 의해 분석되었으며 두 가지 조직의 니트 소재를 편직하여 이들의 열적특성을 분석하였다. EDS 분석에서 Zr 피크를 확인하였으며 원사내에 Zr 원소가 19.29% 함유되어 있음을 확인하였다. 또한 원적외선 분석에서 5~20㎛ 파장 영역에서 원적외선 방사에너지가 3.65 x 102 W/m2, 방사율이 0.906 임을 확인하였다. KES-F7 측정기 분석에서 ZrC 함유 편성물의 Qmax 값이 일반 PET 편성물의 값보다 낮은 값을 보였고 보온율 값은 ZrC 함유 편성물이 일반 PET보다 더 높은 값을 보이므로서 ZrC의 축열성을 확인하였다. 열전도도는 Zr의 높은 열전도도 때문에 일반 PET 편물보다 더 높은 값을 보였다. ZrC의 함유가 편물의 촉감에 미치는 영향을 없었으며 편성 조직이 더 큰 영향을 주는 것을 확인하였다.
This study was performed to evaluate the type and concentration of TVOC and formaldehyde emitted from asbestos stabilizers, because the stabilizers can be applied on the surface of asbestos contained building materials(ACBM). The emission test of three organic and synthetic resins(OSBS) and five inorganic based stabilizers(IBS) were tested for 7 days. The amount of emission and concentrations of TVOC were measured using GC/FID and GC/MS. In case of formaldehyde, quantitative analysis was carried out using HPLC. The average concentrations of TVOC and formaldehyde of 8 stabilizers were 1.173 mg/m2․h and 0.007 mg/m2․h, respectively. The maximum TVOC concentration among five OSBS was 5.698 mg/m2․h and exceeded the TVOC emission standard(4.0 mg/m2․h) for general building materials. According to the this study results, the applied stabilizer can be role one of pollutant sources like paints, floor tile etc. The emission test has to be tested one of stabilizers efficiency to manage the indoor air quality of building.
There has been a growing concern about the emissions of formaldehyde and VOCs from automotive interior materials which could have an important impact on the in-vehicle air quality(IVAQ) of automotive vehicles. Many leading automobile manufacturers have now introduced their own specification standards for testing and limiting emissions from products produced by their suppliers. In addition, ISO (International Standard Organization) has been established ISO 12219-1, 2, 3, 4, 5 to determine the emissions of volatile organic compounds from automotive vehicle. The objective of this paper is to compare the area specific emission rates determined from surface emissions testing using the microchamber(MC) in comparison with a 1 m3 emission test chamber(ETC) operated in accordance with ISO 12219-3, ISO 12219-4. Measured emission concentrations in absolute terms were different between Microchamber and 1 m3 chamber. However, qualitative comparison of the chromatograms shows that the Microchamber is able to perform a screening test
This study deals with the high frequency induction hardening (HF at 850℃, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen, which was tempered at 150℃, did not show any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE (acoustic emission) amplitude distribution showed between 45dB and 60dB. (2) A slip and fracture occurred at the hole area of the HF specimen which was tempered at 300℃. As they pass the yield point, the AE energy is increased intermittently and AE amplitude distribution exists between 70dB and 85dB. In addition, after imposing the maximum tensile load, AE signals showed high amplitude and energy distribution. The AE amplitude showed between 45dB and 70dB. (3) A brittle fracture occurred at HF specimen which was tempered at 450℃ as if it is torn in the direction of 45° on parallel area over the both sides of the tensile specimen, which lead to several peak appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.
본 연구에서는 원적외선 방출 직불 소재를 개발하기 위해서 나노사이즈 게르마늄 업자와 PET chip을 마스터 배치 칩으로 제조하고 이를 PET와 용융 방사하여 sheath-core conjugate 복합사를 제조하여 이들의 물성과 이들 복합사로 제조한 직물의 원적외선 방출특성을 측정 분석하였다. 또한 게르마늄을 함유한 필라멘트와 직물의 물성을 측정하고 이들 물성이 사가공 공정의 중요공정 인자인 벨트각과 사속비 등의 공정인자와 직물 설계에서의 경사와 위사의 밀도에 관계하는 직물 밀도 계수 등의 설계 조건에 의해 직물 역학 특성과 직물 촉감등의 물성이 어떠한 변화를 가져 오는가에 대한 분석을 하였다. 최적 방사조건에 의한 core부에 게르마늄이 함유된 sheath-core형 PET복합사를 제조하였으며 이들의 절단강신도 모두 일반 PET계(系)의 물성치를 보였으며 DTY는 제직성에 문제가 없는 강신도를 보였고 습건열 수축률은 일반 PET사 보다 높은 값을 보였다. 게르마늄 함유 직물의 원적외선 방사강도는 5~20μm 파장 영역에서 3.53×102W/m2을 보였으며 방사율은 0.874를 보였다. 그리고 최적 사가공 공정 조건 설정과 최적 직물밀도 설계로 직물의 역학 특성치와 촉감 특성의 저하를 막을 수 있음을 확인할 수 있었다.
Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at 400˚C under an N2/O2 atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from 400˚C to 600˚C. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under 500˚C, while nanowire structures begin to form on the beads above 600˚C. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of 2.0 V/μm was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.
This study is deal with the high frequency induction hardening (HF at 850℃, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen which was tempered at 150℃, did not appear any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE amplitude distribution showed between 45~60dB. (2) The HF specimen which was tempered at 300℃, slip and fracture occurred at the hole area of the tensile specimen. As it passes the yield point, the AE energy increased intermittently and AE amplitude distribution showed between 70~85dB. In addition, after the maximum tensile load, it showed high amplitude and energy distribution. The AE amplitude showed between 45~70dB. (3) The HF specimen which was tempered at 450℃, a brittle fracture occurred as if it is torn in the direction of 45℃ on parallel area over the both sides of the tensile specimen, which led to several peak to be appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.
This paper investigates tensile characteristics of the stress aging heat-treated SM45C steel which are aging temperature at 250℃, 300℃, aging time at 1, 3 hours, and applied load at 300, 400N conditions by using acoustic emission. Most suitable aging condition was aging temperature 300℃, aging time 1 hour, and aging applied load 300N. And increased yield load 28.3% than non-treatment specimen in this condition. AE energy in elastic limit increased about 16.7 times than non-treatment specimen. When aging time is 3 hours, yield load decreased than other conditions that possibility is high to have itself defect on inside the specimen or coarse grain size precipitation is different in happened over-aging phenomenon. Especially, in case of 300℃, 3 hours and 400N condition appeared AE energy in elastic limit fairly high about 30 times than non-treatment specimen. This is considered by emit a lot of energies when material causes plastic deformation because the ductility increases on specimen by over-aging phenomenon.
To characterize testing bags for the interior parts and components of new vehicles, three types kinds of bags (Tedlar bag, Polyester Al bag, and PET bag) were selected and investigated.. All testing bags were initially purged with 5 L of pure nitrogen gas. Then, they were heated consecutively for four times in a chamber at 60 and 100℃ at hourlys intervals. Changes in background concentration levels of VOCs and HCHO were then measured. After the 4th heat treatment at 100℃, the background concentrations in PET bag were lower by 5 times than the ftrst time treatment. The results of PET bags were superior to the other bags under the same treatment conditions. Even without heat treatment test, the background concentrations of PET bag was also lower than the others by 2 to 6 times. Based on our results, it can be concluded that the PET bag is the most suitable for sample tests as it is physically the most stable along with the lowest background of all 3 sample bags with the least bias.