The objective of this study is to analyze the indoor air quality of multi-use facilities using an IoT-based monitoring and control system. Thise study aims to identify effective management strategies and propose policy improvements. This research focused on 50 multi-use facilities, including daycare centers, medical centers, and libraries. Data on PM10, PM2.5, CO2, temperature, and humidity were collected 24 hours a day from June 2019 to April 2020. The analysis included variations in indoor air quality by season, hour, and day of the week (including both weekdays and weekends). Additionally, ways to utilize IoT monitoring systems using big data were propsed. The reliability analysis of the IoT monitoring network showed an accuracy of 81.0% for PM10 and 76.1% for PM2.5. Indoor air quality varied significantly by season, with higher particulate matter levels in winter and spring, and slightly higher levels on weekends compared to weekdays. There was a positive correlation found between outdoor and indoor pollutant levels. Indoor air quality management in multi-use facilities requires season-specific strategies, particularly during the winter and spring. Furhtermore, enhanced management is necessary during weekends due to higher pollutant levels.
The objective of this study was to investigate the comparison of feeding a total mixed ration (TMR) containing imported alfalfa hay and TMR containing hot-air dried domestic alfalfa on rumination activity, milk production, and composition in lactating dairy cows. Ten Holstein dairy cows were divided into two groups: control (imported alfalfa hay + TMR) and treatment (hot-air dried domestic alfalfa + TMR) groups. The study was conducted over a total period of 18 days, including a 13-days adaptation period and a 5-days main experimental period. The results indicated no differences in total digestible nutrient and net energy intake between the imported and hot-air dried alfalfa. Body weight was not significantly different between the two groups (p>0.05), however, total feed intake and rumination time were significantly and tendentially higher in the treatment group compared with control group, respectively (p<0.001; p=0.075). Milk yield was not significantly different between the two groups (p>0.05), however, milk fat (kg) and lactose (%) concentration were significantly higher in the treatment group compared with control group (p=0.016; p=0.02). This study confirms that feeding TMR with hot-air dried domestic alfalfa results in no differences of feed intake, rumination activity, and milk productivity. Therefore, it is considered that hot-air dried domestic alfalfa can be used as a substitute for imported alfalfa on lactating dairy cows.
Passengers on public buses operating in the metropolitan area are exposed to the closed indoor air for minutes to hours. The indoor air quality of buses is mostly controlled through ceiling-mounted ventilation and filtration devices. A simulation study using a commercial code was conducted for fluid flow analysis to evaluate the potential effectiveness of an air purifier that can be inserted into bus windows to supply clean air from the outside to the inside. As a result of field measurements, the average CO2 concentration inside the bus during morning and evening rush hours ranged from 2,106±309 ppm to 3,308 ± 255 ppm depending on the number of passengers on board. This exceeded the Guideline for Public Transportation. The optimal installation position of an air purifier appeared to be the front side of the bus. In fact, even a low diffusing flow velocity of 0.5m/s was effective enough to maintain a low concentration of CO2 throughout the indoor space. Based on numerical analysis predictions with 45 passengers on board, the maximum CO2 concentration in the breathing zone was 2,203 ppm with the operation of an air purifier.
2020년 6월부터 8월까지 일본 도쿄 남쪽 940 km 해상에 위치한 니시노시마 화산이 분화하였다. 2020년 7월 말
발생한 분화로 인한 화산재와 화산가스 일부가 우리나라에 영향을 주었을 가능성이 있는 것으로 보도되었다. 본 연구에
서는 화산재 확산 수치모의 프로그램인 Ash3D를 이용하여 현지시각 2 02 0년 7월 2 8일 0시에 화산폭발지수 3의 분화가
발생한 것으로 설정하고 수치모의를 실시하였다. 수치모의 결과, 화산재가 니시노시마 인근에서 동풍을 타고 7월 30일
새벽 오키나와에 도달한 이후 남풍을 타고 북상하여 8월 1일 제주도에 상륙하고 시계방향으로 회전하듯이 이동하면서
8월 2일에는 남부지방에 영향을 주는 것으로 나타났다. 실제 측정된 PM10 미세먼지농도는 제주도 고산기상관측소에서
8월 1일부터, 부산 구덕산기상관측소에서는 8월 2일부터 상승한 것으로 나타나 니시노시마 화산 분화가 제주도 및 남
부지방의 미세먼지 수치에 영향을 준 것으로 보인다.
Vulnerable populations in healthcare facilities are more sensitive to exposure to indoor air pollutants, and therefore are more affected by such pollutants than the general population. This was the underlying reason why studies of indoor air pollutant concentration distribution and health risk assessment have been conducted targeting facilities, such as daycare centers, medical facilities, elderly care facilities, and postnatal care centers. However, previous studies have mainly focused on daycare and medical facilities for their research, and relatively speaking, studies conducted on the other venues are lacking. Therefore, this study aims to present the current status of indoor air quality and perform a health risk assessment in regard to Formaldehyde exposure at postnatal care centers and elderly care facilities. Here, the study focused on facilities that had undergone pollution level inspections from January 2017 to December 2021. A total of 81 postnatal care centers and 48 elderly care facilities were selected as the subject of the study. Then, the study utilized concentrations of five elements (CO2, HCHO, PM10, PM2.5, TBC) to determine the status of indoor air quality of both postnatal care centers and elderly care facilities. For health risk assessment, HCHO concentration was used. The investigation demonstrated that the yearly average concentration of the five elements stood within the indoor air quality maintenance standards, and the ratio of PM2.5 to PM10 in the two types of facilities was distributed as high as about 70%. In addition, the study showed that HCHO and TBC demonstrated a positive correlation when the relationship between indoor temperature and humidity with the five elements was examined. The health risk assessment showed that the cancer risk level of postnatal care center users stood below 10-6, below the level that is perceived as an acceptable risk. The cancer risk of workers from both postnatal care centers and elderly care facilities and elderly care facility users exceeded the acceptable risk level of 10-6, but was shown to be below 10-4, the maximum acceptable risk.
This study aims to investigate the effect of drying temperatures on the quality characteristics and physicochemical properties of vegetables. Lettuce and napa cabbage were dried at 40, 50, and 60oC and analyzed for various quality indexes. Higher drying temperature induced the lower L* and higher a* and b* values of samples. Also, it resulted in lowering the rehydration ratio, pH, and total free amino acid content of dried vegetables. The outcome might be due to the damage to the internal structure of vegetables and the decomposition of free amino acids during thermal treatment. Higher drying temperatures led to higher soluble solid and total polyphenol contents due to the conversion of phenolic compounds from combined to free form during the drying process, which changed phenolic compounds from combined to free form. Consequently, samples dried at higher temperatures had higher DPPH radical scavenging ability. The final moisture content and drying time decreased as the drying temperature increased; moreover, the antioxidant activity increased. A lower drying temperature is beneficial to maintaining the chemical characteristics of crops.
Air curtains, blowing air streams across a doorway, were installed in trial trains on subway line 7 in 2021 and they have been operated with dust collectors to improve the air quality of subway trains. In this study, we investigated the effects of air curtains on the indoor air quality in the trial subway trains. The concentrations of PM2.5 and carbon dioxide in the four selected cabins were measured in the morning hours (e.g., 7:30–11:30 am including the morning rush hour). The measurements were conducted on February 26, March 31, April 30, and May 14, 2021 and air curtain (AC)s and dust collector (DC)s in the four cabins were operated differently on those measuring days. All devices were turned off in the control cabin and only ACs, only DCs, and both the ACs and DCs were turned on in the other three cabins, respectively. The 4-h-averaged PM2.5 concentrations in the cabins, where only ACs and only DCs are turned on, are lower than in the control cabin by 18% and 26%, respectively. In addition, the joint operation of ACs and DCs can decrease the PM2.5 concentration by up to 42%. The time series of PM2.5 concentrations, measured on April 30, illustrate again that ACs block the intrusion of outside particulate matters. The 4-h-averaged carbon dioxide concentrations in the four cabins do not show monotonic differences between the cabins because of the generation of carbon dioxides inside the cabins. When the weights of individual cars and thus the numbers of passengers are similar between the cabins, the carbon dioxide concentrations in the ACs-operated cabins are higher than in the control cabin. This indicates that ACs can block the outward emission of carbon dioxides and maybe other indoor air pollutants as well.
Effects of substrate bed interior environments on mushroom qualities were investigated in oyster mushroom cultivation facilities in which either Reversible Air-Circulation Fans (RACF) blowing air in two directions (upwards and downwards) or customary Convection Fans (CF) with air blowing only upwards were operated throughout the cultivation period. Two days before harvest, the deviation ranges of the bed interior temperature and relative humidity in the facility using RACF were in the ranges of 1.0-1.3oC and 7.8-9.0% in the first growing cycle, and within 0.7-1.1oC and 10.0-11.4% in the second cycle. In the facility using CF, the ranges of variation in the indoor environment parameters (5.8-6.4oC and 21.3-23.1% in the first growing cycle, and 3.4-5.7oC and 14.6-18.3% in the second growing cycle) were much enlarged compared to those associated with RACF. These results strongly indicate that RACF significantly enhances air uniformity. Some mushroom qualities differed between growing cycles. For instance RACF in the first cycle gave somewhat better qualities than CF, but some qualities, like pileus diameter and stipe length, were slightly lower than those described for CF in the second cycle when the cultivation substrate weakened. The observation that some qualities worsened under RACF conditions, despite better air uniformity during the growing cycle, revealed the possibility that downward wind may exert a non-negligible negative effect on mushroom growth. Therefore in the future, making wind measurements on the interior and exterior of substrate beds is necessary to obtain insights into their influences on mushroom qualities. The RACF operation manual needs to be edited to convey this necessity.
The purpose of this study was to investigate the possibility of using air potato (Dioscorea bulbifera) powder to make sponge cakes. The sponge cake batter was made by adding 0, 10, 20, 30, and 40% of air potato powder, and the resultant anti-oxidative properties and quality characteristics were analyzed. The study showed that the height, batter yield, and loss rate of sponge cakes decreased as increasing amounts of air potato powder were added, but the weight, viscosity, moisture content, and specific gravity increased. An evaluation of the color showed that the L and b values were highest in the control group but the a value was highest in the 40% group. There was no significant difference between samples in terms of cohesiveness, although the study showed a significant increase in the hardness, chewiness, and gumminess as the quantity of air potato powder in the sponge cakes increased. The total polyphenol content and DPPH radical scavenging activity increased noticeably as more air potato powder was added to the sponge cakes. The results thus showed that the study groups with the addition of air potato powder showed higher antioxidant activity than the control group.
Although airborne wear particles (AWPs) generated from wheel-rail contacts are the major source of particulate matter (PM) in subway systems, studies on reducing the generation of such particles in order to enhance air quality are extremely rare. Therefore, this study investigated the effect of applying water-lubricant (applying tap water) on improving air quality by reducing the mass concentration (MC) of AWPs from wheel-rail contacts at a train velocity of 73 km/h using a twin-disk rig. An optical particle sizer was used to measure the MC of particles with the diameter range of 0.3 μm~10 μm. The results showed that the generation trends regarding PM1, PM2.5, and PM10 were different for dry and water-lubricated conditions: all three PMs showed an increasing-decreasing trend with slip rate under dry conditions; however, they were almost constant with slip rate under water-lubricated conditions. The particle size distributions were also different for dry and water-lubricated conditions: the peak occurred in multi-modal with the largest peak at approximately 6 μm in diameter under dry conditions; whereas, the peak occurred in bi-modal with the largest peak at approximately 0.9 μm in diameter under water-lubricated conditions. In addition, MCs were mostly smaller under water-lubricated conditions than dry conditions except at approximately 0.9 μm in diameter. Applying water significantly decreased PM1~2.5 and PM2.5~10 by more than 95%. This caused a decrease in PM2.5 and PM10 by 48.1% and 78.5%, respectively. On the other hand, applying water increased PM0.3~1 (i.e., PM1) by 52.8%, possibly owing to the effect of water vapor and mineral crystals from tap water. Overall, these findings indicate that water-lubrication can improve air quality in subway systems by reducing the MC of APWs generated from wheel-rail contacts. This study may provide a reference for future studies seeking to improve air quality in subway systems by reducing AWPs generated from wheel-rail contacts by applying lubricants.
This study evaluated the Protaetia brevitarsis larvae powder’s characteristic changes using hot air drying (60±2.5oC, 12 h) with different pre-treatment methods, including two sacrifice methods, two storage temperatures, and two defatting processes. Appearance, yield, moisture contents, pH, color, proximate analysis, volatile basic nitrogen level, DPPH radical scavenging activity, and total phenol content were assessed. Results revealed that a combination of blanching, defatting, and -20oC storage temperature resulted in higher total phenol contents, lower water contents, and lower volatile basic nitrogen levels than other methods. Defatted treatment resulted in a higher L-value than the non-defatted treatment. Taken together, these results indicate that a combination of -20oC storage, blanching, and defatting is the optimal pre-treatment method for obtaining P. brevitarsis larvae powder with high total phenol content, low water content, and low volatile basic nitrogen, taking into account cost efficiency considerations.
The purpose of this paper is to propose part management and standardization to reduce cost and increase compatibility of parts through standardization and standardization of parts to be applied to urban air mobility(UAM) systems, Personnel Air Vehicle(PAV), Vertical Take-Off and Landing (VTOL), and so on. In other words, parts used in the urban air transportation system must be verified from the initial design stage in accordance with the aviation standard, and a systematic management system for various parts must be established to secure stability and improve quality. Therefore, as a system similar to the aviation component management system, it should be thoroughly managed for urban aviation components.
Indoor air quality management is essential for a healthy life. However, it is difficult to perceive, detect, and monitor the level of indoor air pollution and this means that it is possible to be exposed to more pollution indoors than outdoors. In this study, in order to derive effective indoor air quality management measures, public perceptions and behavioral characteristics regarding indoor particulate matter and air quality management methods were investigated through a survey of 1,000 people. Based on the survey, it was found that most of the respondents had a negative perception of the indoor air quality of their residence, and natural ventilation was the most used method for indoor air quality management. Although the frequency of use of air quality management devices such as air purifiers and mechanical ventilation systems was relatively low, their effect regarding air quality management was positively perceived. In particular, the results of survey indicated that respondents of families which included members with fragile health engaged in more active behavior regarding in indoor air quality management than those respondents whose family members had no health issues and that the former have used air quality management devices more frequently. Therefore, it is necessary to develop proper guidelines to encourage more people to actively participate in improving indoor air quality.
In this study, indoor air quality indices (IAQI-C and IAQI-E) were developed for child care centers and elderly care centers based on health effects, and compared to the air quality index (CAI) for outdoor atmosphere. In addition, composite indices that integrate individual indices for each pollutant were developed to quickly and conveniently recognize the current air quality. Among all data, 71.2% and 35.6% belonged to the grades 'Good' and 'Moderate' for child care centers and elderly care centers, respectively. This assessment is more stringent than the CAI's criteria.
본 연구는 저장 온도를 달리하여 높은 상대습도의 환경에서 건조 감자를 저장하였을 때 발생하는 품질변화를 관찰하였다. 저장기간 및 건조온도가 증가함에 따라 L* value 는 감소하였고, a* 및 b* value는 증가하는 경향을 나타내었다. 수분활성도는 높은 습도 조건으로 인해 10일차부터 급격히 증가하였으며, 환원형 비타민 C 함량은 급격히 감소하는 경향을 나타내었다. pH 값은 저장기간 동안 완만하게 감소하였으며 40oC에서 저장했을 때 큰 폭으로 감소하였다. 저장기간 동안 대장균군은 검출되지 않았으며, 일반 세균 수는 저장 온도가 증가함에 따라 많이 검출되었다. 전체적으로 20oC와 30oC에서 저장한 시료 간의 차이는 크지 않았으나, 40oC에서 저장한 시료의 경우 큰 품질변화를 나타내었고, 밀봉된 상태로 저장한 대조구의 경우 품질변화가 적게 나타나는 것을 확인할 수 있었다. 따라서 본 연구결과를 종합해 볼 때, 밀봉하여 산소와 수분을 차단한 상태로 저장하는 것이 제품 고유의 특성을 유지하는데 가장 효과적이며, 높은 습도의 환경일 경우 낮은 온도로 저장하는 것이 품질 변화를 지연시키는데 도움이 될 것으로 판단된다.
본 연구는 생육초기 저온 저일조 조건이 토마토의 수량 및 품질에 미치는 영향을 구명하기 위해서 수행되었다. 비가림 하우스에서 정식 후 17일에 측창 개폐와 차광막을 이용하여 26일간 저온, 저온차광 처리하였다. 처리기간 동안의 토마토 GDD를 산출한 결과 저온 처리로 인해 GDD가 5.5% 감소하였다. 차광 처리에 의한 평균 일사량을 분석한 결과 대조구 대비 차광처리가 25.3% 수준이었으며, 일 최고광량의 평균을 분석한 결과 대조구, 차광처리가 각각 634, 156W·m -2였다. 처리 결과 저온차광에 의하여 엽수, 엽면적, 생체중, 건물중, SPAD를 분석한 결과 차광에 처리에 의하여 생육이 저하된 것을 볼 수 있었으며 초장은 웃자란 것을 확인할 수 있었다. 수량을 분석한 결과 첫 수확일은 정식 후 63일로 동일 하였으나 무처리구, 저온처리, 저온 강차광 순으로 각각 177, 99, 53g/plant 로 최대 3.3배까지 차이를 보였으며, 최종 수확일인 정식 후 87 일의 누적수량은 각각 1734, 1131, 854g/plant로 생육 초기 저온, 저온차광 처리에 의하여 수량이 각각 34.8, 50.7% 감소한 것을 확인할 수 있었다. 처리와 수확기에 따른 토마토의 품질을 조사한 결과 당도와 산도는 처리 및 수확기에 따른 차이가 없었다. 처리에 따른 광합성 특성을 조사하기 위하여 이산화탄소반응 곡선을 작성하고 광합성 기구의 생화학적 모델을 활용하여 분석한 결과 최대 광합성 속도와 J, TPU, Rd는 온도에 따른 차이를 보이지 않았으나 차광에 의하여 감소된 것을 확인할 수 있으며, Vcmax의 경우 저온과 차광에 따라서 값이 감 소되는 것을 확인할 수 있었다. 이로 보아 정식 후 생육초기 저 온 저일조는 토마토의 초기생육과 광합성능력을 감소시키며, 생육이 진행되면서 생육에 대한 차이가 없어지거나 줄어들고 품질 변화도 나타나지 않았지만 누적 수량이 감소하기에 이를 방지하기 위해서는 생육초기 저온 및 저온저일조 등 이상기상 발생시 보온 및 보광이 필요하다.