간행물

한국분말야금학회 학술대회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

한국분말야금학회 2006년도 추계학술대회논문집 (2006년 9월) 358

42.
2006.09 구독 인증기관·개인회원 무료
The powder forging (PF) process is used to produce fully dense powder metallurgy (PM) parts for high performance automotive applications. PF connecting rods have been widely accepted in the US, Japan, and other countries due to higher performance and lower manufacturing costs when compared to conventionally forged steel connecting rods [1]. In order to meet and exceed requirements for higher fatigue strength and better machinability of PF connecting rods, a newly developed machinability enhancer, named KSX, was introduced [2]. A comparison study between powder forged materials prepared with 0.3% MnS and with 0.1% KSX additions showed excellent properties in the case of the mix with KSX.
43.
2006.09 구독 인증기관·개인회원 무료
Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at 300 , the Al alloy showed stain softening ℃ phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of 200 μm and pitch of 250 μm) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test.
45.
2006.09 구독 인증기관·개인회원 무료
Titinium carbide (TiCx) was produced by self-propagating high temperature synthesis (SHS) method. The morphology and non-stoichiometric number of the SHS product were observed by scanning electron microscopy and neutron diffractometry, respectively. Tubular titanium carbide with hole inside was formed with different non-stoichiometric number (x), which value increased with combustion temperature.
46.
2006.09 구독 인증기관·개인회원 무료
Co-based amorphous powder was produced by a new atomization process “Spinning Water Atomization Process (SWAP)”, having rapid super-cooling rate. The composition of the alloys was ((Co0.95Fe0.05)1-xCrx)75Si15B10 (x=0, 0.025, 0.05, 0.075). The powders became the amorphous state even if particle size was up to about 500 μm. The coercive force of powders was about 0.35 - 0.7 Oe. Furthermore, Co-based amorphous powder cores with glass binders were made by cold-pressing and sintering methods. The initial permeability of the core in the frequency range up to 100 kHz was about 110, and the core loss at 100 kHz for Bm = 0.1 T was 350 kW/m3.
47.
2006.09 구독 인증기관·개인회원 무료
The magnetic inductance of nanocrystalline Fe73Si16B7Nb3Cu1 and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of Fe73Si16B7Nb3Cu1 alloy was about 88μH at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.
48.
2006.09 구독 인증기관·개인회원 무료
Microstructure and soft magnetic properties of bulk amorphous and/or nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys prepared by consolidation at 5.5GPa were investigated. The relative density of the bulk sample 1 (from amorphous powders) was 98.5% and the grain sizes were about 10.6nm. While the relative density and grain sizes of bulk sample 2 (from nanocrystalline powders) are 98% and 20.1nm, respectively. Particularly, the bulk samples exhibited a good combined magnetic property: for Sample1, Ms=125emu/g and Hc=1.5Oe; for Sample2, Ms=129emu/g and Hc=3.3Oe. The success of synthesizing the nanocrystalline Fe-based bulk alloys will be encouraging for the future development of bulk nanocrystalline soft magnetic alloys.
49.
2006.09 구독 인증기관·개인회원 무료
The fracture behavior and mechanical characteristics of sintered rare-earth magnets were investigated. It shows that the fracture behavior and bending strength of the magnets obviously exhibit anisotropy. Sm-Co magnets tend to cleavage fracture in the close-packed (0001) plane or in the (10 11 ) plane. The fracture mechanism of Nd2Fe14B magnet mainly appears to be intergranular fracture. The anisotropy of fracture behavior and mechanical strength of sintered rare-earth magnets is caused mainly by the strong crystal-structure anisotropy and the grain alignment texture. The effects of Nd content, and Pr, Dy substitution on the impact stability of Nd2Fe14B magnets were also reported.
50.
2006.09 구독 인증기관·개인회원 무료
In the paper, the influence of different particle size D:D>125μm, D<50μm and between on magnetic properties of a standardized dielectromagnetic is presented. The tests were taken at frequencies of between 50Hz, and 500Hz. Presented in the paper results provide important materials property data to allow the selection of the most appropriate dielectromagnetic particle size for different applications.
51.
2006.09 구독 인증기관·개인회원 무료
Metal powder for dust core application was developed. The powder can be produced improved high-pressure water atomization process. The process has produced powder of spherical shape and lower coercivity. The dust core obta ined shows lower core loss.
52.
2006.09 구독 인증기관·개인회원 무료
SMC(Soft Magnetic Composite) materials which we have newly developed were studied for their applying effects. It shows almost the same motor output power as the laminated Si-steels of 0.35mm in thickness, although core loss of SMC is about 1.5 times that of the laminations. As shown in the results, the SMC motor core is sufficient for real use as a motor core. Furthermore, a 3-D shaped motor core made of SMC can improve approximately 20% of the output compared with the same size motor made of laminations.
53.
2006.09 구독 인증기관·개인회원 무료
Magnetic powder core is considered to be one of the essential parts in modern electronic devices such as power supplies, digital telecommunication equipments and automotive electronics. To satisfy the recent requirement for the miniaturization of micro-systems and portable devices, the inductors or magnetic powder cores should have reduced compact volume and high universality both in magnetic and geometric aspects. In contrast, in some application areas such as power converters, the price is also one of the important aspects to be considered. To comply with such stringent technical requirements in modern electronic industry, it is highly required to develop magnetic materials with increased frequency stability, higher saturation magnetic flux density, higher permeability and higher quality factor (Q). The magnetic alloy powders which are currently being used in PM industry are permalloy (Ni-Fe), sendust (Fe-Si-Al), iron (Fe), silicon steel (Fe-Si) and ferrous amorphous alloy powders. Recent research trends for the industrial application of soft magnetic material and magnetic powder core will be introduced in the present paper. Emphasis will be placed on the newly required properties and corresponding new PM technologies for newly emerging application fields such as hybrid electric vehicle, alternative and renewable energy systems for next generation.
54.
2006.09 구독 인증기관·개인회원 무료
Wrought Si-steels are generally used for electromagnetic valves, which are needed good response. To date, Hitachi Powdered Metals Co., Ltd. have produced Fe-Si base sintered magnetic material, EU-52, which shows a magnetic flux density of more than 1.25T at 2000A/m and a maximum permeability of more than 3500. However these magnetic properties are lower than that of wrought Si-steels. Because EU-52 has a low density of 7.2Mg/m3. For improving the magnetic properties, it is necessary to increase the density of sintered cores. To increase density, a new mixing method of coating fine Si powders on atomized iron powders was developed, for avoiding the Kirkendall effect. As the result, developed P/M Fe-Si magnetic cores shows higher density of 7.38Mg/m3, higher magnetic flux density of 1.48T at 2000A/m and higher maximum permeability of 6800.
56.
2006.09 구독 인증기관·개인회원 무료
Recently, there has been a growing demand for soft magnetic materials with high conversion characteristics, due to the trend of electric devices to higher-frequency range. For ruduceing core loss in the high-frequency range, using finely grained and high-resistivity Fe-based alloy powder is most efficient methods. But, conventionally, there's been a compressibility problem for such powder. In this work, Fe-based alloy powder that offers both high resistivity and high compressibility was developed by studyuing composition of the powder, and reduction of core loss of P/M soft magnetic materials in the high frequency range was achieved.
57.
2006.09 구독 인증기관·개인회원 무료
Electric scroll-compressor drives are commonly used for e.g. home appliance cooling units. The recent development of hybrid cars with internal combustion engine in combination with electrical propulsion requires new solutions to be able to cool the passenger compartment of cars at stand-still. Both application areas demand efficient motor drives to reach good economy and efficient use of limited battery power as well as competitive volume/weight for a given output. The BLDC motor is a controllable and efficient solution. A major part of the motor is the soft-magnetic core. The powder based Somaloy® material shows high resistivity and induction as the result of engineered iron particles with in-organic coating. The unique features of compacted Somaloy® components can be utilized to enhance the shape and total volume of the BLDC motor with at least maintained efficiency compared to the use of traditional laminated steel sheet cores. A careful design of the Somaloy® components can also simplify assembly and positively influence the coil configuration. This study shows a comparison between a typical laminated BLDC motor and a redesigned, Somaloy® based version adapted for a scroll-compressor application.
59.
2006.09 구독 인증기관·개인회원 무료
The decrease of the distance between particle centers due to the growth of the sinter necks can be explained by the well known two-particle model. Unfortunately this model fails to provide a comprehensive description of the processes for 3D specimens. Furthermore, there is a significant discrepancy between the calculated and the measured shrinkage because particle rearrangements are not considered. Only the recently developed analysis of the particle movements inside of 3D specimens using micro focus computed tomography (μCT), combined with photogrammetric image analysis, can deliver the necessary experimental data to improve existing sintering theories. In this work, μCT analysis was applied to spherical copper powders. Based on photogrammetric image analysis, it is possible to determine the positions of all particle centers for tracking the particles over the entire sintering process and to follow the formation and breaking of the particle bonds. In this paper, we present an in-depth analysis of the obtaine data. In the future, high resolution synchrotron radiation tomography will be utilized to obtain in-situ data and images of higher resolution.
60.
2006.09 구독 인증기관·개인회원 무료
Pulsed Current Sintering (PCS) process possesses some problems that need to be resolved. We, therefore aims at understanding phenomena of PCS process by presenting some basic data on in situ sintering behavior of PCS. Special graphite mold equipped with thermo couple and electrodes were designed to measure the temperature, electric current and voltage inside the powder during PCS process. We apply three types of raw materials, especially for ZnO as semiconductor, Al2O3 as non-conductor and WC as good conductor. The electric current and voltage were measured for each powder during PCS process. In addition, their electric resistance properties were calculated.
1 2 3 4 5