본 연구에서는 정서능력과 뇌반구 기능이 문제행동에 미치는 영향을 밝히는 것이 주된 목적이었다. 남자 중학생 1,050명을 연구의 대상으로 하여 정서능력척도검사(Trait Meta-Mood Scale), 뇌 정보처리 특성 검사(Brain Preference Indicator Test), 그리고 공격성과 비행은 한국판 아동자기보고 검사(Korea Youth Self Report-Child Behavior Check List)를 사용하여 조사 연구하였다 연구 대상은 초기청소년기에 해당하는 남녀 중학생 1,479명을 표집하였다. 연구결과 문제행동을 많이 가진 집단은 보통 아동들에 비해 정서능력 요인중 정서의 명확성이 유의미하게 낮았으며, 자신에 대한 정서 주의는 많이 기울이는 것으로 나타났다. 뇌정보 처리에서는 주로 우반구 우세적 정보처리를 많이 하는 것으로 나타났다 뇌정보처리 특성과 정서 명확성 그리고 정서주의가 문제행동의 하위 요인인 공격성향과 비행성향 모두 유의미하게 설명하는 것으로 나타났다. 반면, 성별과 정서개선, 성별과 정서명료의 상호작용효과가 나타나, 이 두 요인이 공격성과 비행에 영향을 주는 효과가 남자와 여자학생 간에 다르게 나타났다.
We developed a new program for automatic continuum normalization of Echelle spectrographic data. Using this algorithm, we have determined spectral continuum of almost BOES data. The first advantage of this algorithm is that we can save much time for continuum determination and normalization. The second advantage is that the result of this algorithm is very reliable for almost spectral type of spectrum. But this algorithm cannot be applied directly to the spectrum which has very strong and broad emission lines, for example Wolf-Rayet type spectrum. We implanted this algorithm to the program which was developed in the previous study. And we introduced more upgraded BOES data reduction program. This program has more convenient graphical user interface environment, so users can easily reduce BOES data. Lastly, we presented the result of study on line profile variation of magnetic Ap/Bp stars analyzed using this program.
In this paper, we describe the radio astronomical data processing system implementation using Mark5B and its development. KASI(Korea Astronomy and Space Science Institute) is constructing the KVN (Korean VLBI Network) until the end of 2007, which is the first VLBI(Very Long Baseline Interferometery) facility in Korea and dedicated for the mm-wave VLBI observation. KVN will adopt the DAS (Data Acquisition System) consisting of digital filter with various function and 1Gsps high-speed sampler to digitize the radio astronomical data for analyzing on the digital filter system. And the analyzed data will be recorded to recorder up to 1Gbps data rates. To test this, we have implemented the system which is able to process 1Gbps data rates and carried out the data recording experiment.
We study on the consistency of AHP. It is research that extend of SAW methods by [1]. For tools that measure judgment of inconsistency eigenvector methods, we research consistency that introduced consistency ratio by Saaty. in general, the higher consistence of compare matrix the bigger error within matrix. In this paper, we use the AHP for the optimal decision making. By this method, we have optimal decision making numenical example which three models of any domestic motors companies.
Several practical applications of melt-textured bulk superconductors require the complex-shaped products such as curved, ring-shaped, and drilled blocks rather than simple shaped pellets. However, melt-textured bulk superconductors are often damaged when they are cut, grinded, or drilled. With the aim of reducing such damages, we have investigated the preparation of the complex-shaped bulk superconductors by previously machining binder-added precursors and pre-sintered precursors. We could produce various complex-shaped bulk superconductors without cracking from these machined precursors
Five kinds of double stacked 385 (55 x7) filamentary Bi2212/Ag round wires and 55 filamentary tapes with different Ag ratios (silver area/superconductor area) have been fabricated via PIT method, and the effects of Ag ratio and processing factors on critical current density were studied. The effects of the maximum temperature and average filament diameter on critical current density were also studied. The wire of 0.74 mm diameter having Ag ratio 3.7 showed critical current density of at 4.2 K, 0 T.
The microstructure and electrical conductivity of CNTs dispersed nanocomposites depending on the powder processing and CNTs content were demonstrated. The composite powders with homogeneous dispersion of CNTs could be synthesized by a catalytic route for direct formation of CNTs on nano-sized Fe dispersed powders. The sintered nanocomposite using the composite powder with directly synthesized CNTs showed homogeneous microstructure and enhanced elelctrical conductivity. The influence of powder processing on the properties of sintered nanocomposites was discussed by the observed microstructural features.
Rapidly solidified ribbon-consolidation processing was applied for preparation of high strength bulk Mg-Zn-Gd alloys. Mg alloys have been used in automotive and aerospace industries. Rapid solidification (RS) process is suitable for the development of high strength Mg alloys, because the process realizes grain-refinement, increase in homogeneity, and so on. Recently, several nanocrystalline Mg-Zn-Y alloys with high specific tensile strength and large elongation have been developed by rapidly solidified powder metallurgy (RS P/M) process. Mg-Zn-Y RS P/M alloys are characterized by long period ordered (LPO) structure and sub-micron fine grains. The both additions of rare earth elements and zinc remarkably improved the mechanical properties of RS Mg alloys. Mg-Zn-Gd alloy also forms LPO structure in -Mg matrix coherently, therefore, it is expected that the RS Mg-Zn-Gd alloys have excellent mechanical properties. In this study, we have developed high strength RS Mg-Zn-Gd alloys with LPO structure and nanometer-scale precipitates by RS ribbon-consolidation processing. and and bulk alloys exhibited high tensile yield strength (470 MPa and 525 MPa and 566 MPa) and large elongation (5.5% and 2.8% and 2.4%).
The present paper is a parameter study of zinc flake production using a Simoloyer CM01 horizontal high energy rotary ball mill. The manufactured flakes have a dimension in thickness (t) < 1μm and diameters (d) 5-100 μm, consequently a ratio d/t up to 200. The flake geometry is mainly controlled by the variation of process parameters such as rotary speed of the rotor, ratio of powder/ball charge, load ratio of the system, process temperature, operating model and the quantity of process control agent (PCA). The Zn flakes were characterized by SEM, tap densitometry, laser diffraction and water coverage measurement.
The 21st Century Frontier Program, which is one of the R&D programs funded by Korean government, was launched in 1999 to elevate the status of Korean science and engineering capabilities to the advanced nation in the strategic fields. Currently, 23 different fields of science and engineering programs are carried out by researchers in institutes, universities and industries. Center for Advanced Materials Processing (CAMP) was formulated in 2001 to develop the advanced materials as well as to improve the parts manufacturing process. The main role of CAMP is proposing and forecasting the long term vision in Materials Processing Technology and also supporting the project teams for their best performance in R&D. The CAMP program consists of 5 research areas such as, Multi-layer Ceramic Electronic Parts, Powder Formed Precision Parts, 3 Dimensional Polymer Based Composites, Functional Metal Sheets, Parts Integration Technology. An introduction of R & D activities at CAMP, specially focusing on powder metallurgy, will be presented.
This work will report a highly textured β-Si3N4 ceramic by aqueous slip casting in a magnetic field and subsequent pressureless sintering, Effects of the sintering aids, polymer dispersant, pH and stirring time on the stability of the Si3N4 slurries were studied. The textured β-Si3N4 with 97 % relative density could be obtained by slip casting in a magnetic field of 12 T and subsequent sintering at 1800 oC for 1 h. The textured microstructure is featured by the alignment of c-axis of β-Si3N4 crystals perpendicular to the magnetic field, and the Lotgering orientation factor, f, is determined to be 0.8.