Essential fatty acids (EFA) are fatty acids that must be obtained from the diet because they can not be biosynthesized by human or animals. Gamma fatty acids contain gamma-linolenic acid (GLA, 18:3n-6) and dihomo-gamma-linolenic acid (DHGLA, 20:3n-6) as intermediate metabolites of linoleic acid (LA, 18:2n-6), which is an EFA found in vegetable oils. GLA is an important essential fatty acid that is required by human and animals to function normally. Recently, studies have indicated that GLA may be an essential component of the cell membrane, as well as an active component of dietary supplements and medicine. GLA must beadministered through the diet because it is converted into DHGLA in the body quickly and completely. DHGLA is a key material involved in the metabolism of LA. GLA is biosysthesized by the rate limiting step of δc6-desaturase, which is an enzyme that desaturates LA, there by allowing it to be converted into DHGLA via chain elongation. In addition, DHGLA exerts bioactive effects via action as a precursor of eicosanoid series 1. Breast milk contains an abundant amount of GLA; however, GLA is also available directly in evening primrose oil, black currant seed oil, borage oil and hemp seed oil. In addition, GLA enriched animal and plant can be produced using biotechnology, and highly pure GLA can be extracted using supercritical fluids, such as supercritical carbon dioxide, which will allow economically feasible production of GLA for use in medicines.
In this study, degree of rancidity and trans fatty acid formation were examined in fat and oils, including soybean oil (SB), canola oil (CA), corn germ oil (CO), olive oil (OL), palm oil (PO), and beef tallow (BT), during heating for 10-130 minutes at 160-200℃. In order to determine the rancidity of the fat and oils, acid values (AV), iodine values (IV), viscosity, and color were measured. Changes in the amounts of fatty acids and the formation of trans fatty acids were measured using GC and HPLC. For all groups, AV increased, IV decreased, and coefficients of viscosity and color increased as the heating temperature and heating time increased, indicating there were positive correlations between the heating temperature and time and AV. In addition, all groups had similar amounts of trans fatty acids, with the exception of the beef tallow; however, its level only slightly increased with heating. The olive oil had the lowest trans fatty acid content and the lowest amount created by heating. The order of trans fatty acid amounts generated while heating was BT〉PO〉CO〉CA〉SB〉OL. According to the study results, the deep frying temperature during cooking should be 160-180℃ in order to reduce AV and the amount of trans fatty acids that are formed. In addition, it is better to remove beef tallow during cooking and avoid heating at high temperatures since it results in high levels of trans fatty acids. The correlation between the amount of trans fatty acids and AV was positive, while the correlation between the amount of trans fatty acids and IV was negative, indicating that AV and trans fatty acid levels increase while IV decreases as the deep frying temperature and time increase. From the results, it was found that reducing the deep frying temperature and time can lessen increases in AV and trans fatty acids, and decrease IV. Accordingly, to reduce AV and trans fatty acid formation, the ideal deep frying conditions would be to use olive oil or soybean oil rather than beef tallow or palm oil at a temperature of 160-180℃.
The objective of this study was to investigate the consumption pattern of snacks-containing trans-fatty acid in adolescents living in the Kwang-ju area of Korea, and to analyze the relevance toward their eating behaviors, body composition, nutrient intakes, and consumption frequency of snacks-containing trans fatty acid. A survey questionnaire was developed in order to investigate general environmental factors, eating behavior, nutritional knowledge, and the consumption frequency of snacks-containing trans fatty acid. A total of 312 middle school students were surveyed. The collection rate was 97% and ultimately 282 cases were analyzed. Anthropometric measurements, body composition data, and nutrient intakes were also collected. The consumption frequencies for snacks-containing trans-fatty acid were negatively correlated with food behavior scores (p〈0.01) however, pocket money and snack intake frequency per day were positively correlated with consumption frequency. Also, snack consumption frequency had some correlation with the subjects' anthropometric measurements and body composition data such as total body water (p〈0.01), body protein (p〈0.01), body minerals (p〈0.01), and skeletal muscle mass (p〈0.01). Finally, the consumption frequency of snacks-containing trans fatty acid was significantly correlated with calcium intake (p〈0.05), it also showed correlations with vitamin A, retinol, β-carotene, and folic acid intake, although statistical significance was not verified.
Hemp seed oil and evening primrose oil were incorporated into the diets of laying hens for 5 weeks and the level of gamma fatty acid in the eggs that the treated hens laid was then evaluated. Hens were fed corn-soybean based diets that contained 5% tallow, 5% corn oil (CO), 5% hemp seed oil (HSO), or 5% evening primrose oil (EPO). The hemp seed oil and evening primrose oil influenced the amount of gamma linolenic acid found in the eggs through blood. The level of gamma linolenic acid in the plasma was significantly higher in hens that received the HSO and EPO diets than in those that received the tallow and CO diets. The HSO and EPO diets led to a 1.09% and 4.87% increase in egg gamma linolenic acids, respectively, when compared with eggs produced by hens treated with tallow and CO. Taken together, these data demonstrate that healthy eggs with increased gamma linolenic acids can be generated by minor diet modifications when hemp seed oil or evening primrose oil is included in the hen diet.
Pretreatment of eliminating FFA is needed to make biodiesel from animal fat recovered from leather wastes because its acid value is high. This study was carried out to investigate the influence of 4 different pretreatment methods, which are heterogeneous catalyst method, ion exchange resin method, low pressure.high temperature method, and alkali method on the eliminating FFA and fatty acid composition. The results showed that the rate of eliminating FFA increased in the order of alkali method > catalyst method > low pressure high temperature method > ion exchange method. In the case of pretreatment of alkali method using NaOH, the rate of eliminating FFA appeared more than 86% regardless of acid value. Therefore, it was considered that alkali method using NaOH was the most effective in the view of economical and productive aspects, taking it into account that the acid value of animal fat recovered from fleshing scrap generated during leather making processes was 7 to 8.
Fleshing scrap is a kind of wastes produced during leather making process and used in the test of manufacturing biodiesel. The early step of manufacturing biodiesel is fat recovery from fleshing scrap. Hence, we investigated the influence of the way of fat recovery on the fatty acid composition. We used three different recovery ways, that is chemical method by protein decomposition with acid/fat recovering, physical method by protein denaturalization with heat and vacuum/fat pressing, and biodiesel method by protein decomposition/fat recovering. The biological method yielded the best results in terms of appearance transparency. It was most effective to lower acid value. Also the recovered fat by biological method would be favorable methyl-ester reaction raw material for biodiesel because it contains more than 5% of oleic acid among unsaturated fatty acid.
This study was conducted to investgate the effect of gamma irradiation on the lipid oxidation, olfactory properties, fatty acid isomer and volatile compound profiles of five different oil sources. Three plant oils, canola oil, corn oil and soy oil, and two animal fat, tallow and fish oil, were irradiated with 0, 5, 10, and 20 kGy level of dose by Co-60 as a radiation source. Lipid oxidation parameters, FFA, POV and TBARS, were determined according to the AACC and AOCS method. Olfactory property of irradiated oil sources was analyzed using electronic nose (FOX3000, AlphaMOS Co., France) with 12 metal oxide sensors and the result was interpreted using principle component analysis program. Fatty acid isomer profiles and volatile compound profiles of irradiated oils were also measured by GC and GC-MS, respectively. Although the free fatty acid level of oil were the highest by high dose level (20 kGy) of irradiation, changes of both TBARS and POV values by gamma irradiation were varied between oil sources and irradiation level of dose. Electronic nose analysis showed a distinct difference among dose levels of irradiation. Although there was no new volatile compound produced by gamma irradiation, amounts of each volatile compounds were increased by irradiation. Only cis isomer, 9c12c15c of linolenic acid was dose-dependently decreased as irradiation level increased but there was no difference among other isomer profiles of linoleic acid and linolenic acid by gamma irradiation. This study showed that changes in physico-chemical properties of both plant and animal oil were remarkable by gamma irradiation. Therefore, a further study should be needed to scrutinize the interaction among lipid oxidation, production of volatile compounds and off-flavor, and isomerization of fatty acid by gamma-irradiation.
The objective of this study was to determine the effect of dietary oils on the levels of the γ-linolenic acid in chicken meat lipids. Three hundred ten five, 1-d old, male, Ross strain, broiler chicks were fed for 35 d to compare diets containing evening primrose oil(EPO) and hemp seed oil(HO) to a control diet. Fatty acid composition of lipid from chicken skin, thigh and breast muscle were determined at the end of the trial. The level of γ-linolenic acid of lipids from chicken meat fed diets containing EPO or HO was significantly higher than that of the control group(p〈0.05). The level of γ-linolenic acid of lipids from chicken skin was highest in the group, which had been fed the EPO 0.85%, followed in order by EPO 0.7%, 0.5%, EPO mixed oil, HO and HO mixed oil. There was a significant difference in the level of γ-linolenic acid of chicken skin between the control and treatment groups(p〈0.05). The level of γ-linolenic acid of lipids from chicken thigh muscle was also similar to skin, and significantly higher than that of the control group(p〈0.05). The level of γ-linolenic acid of lipids from chicken breast muscle was highest in the group, which had been fed the EPO 0.5%, followed in order by EPO 0.7%, 0.85%, HO 0.5% and HO mixed oil. There was a significant difference in the level of γ-linolenic acid of chicken breast muscle between the control and treatment groups(p〈0.05).
We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with fatty acid (8A5H) and phospholipid (DLPE, DMPC, and DPPA). LB films of 8A5H monolayer and 8A5H-phospholipid mixture were deposited using the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured using cyclic voltammetry with three-electrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at various concentrations(0.1, 0.5, and 1.0 mol/L) of NaClO4 solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate was 50, 100, 150 and 200 mV/s, respectively. As a result, LB films of fatty acid and phospholipid (8A5H/DLPE and DPPA) appeared irreversible process were caused by only the reduction current from the cyclic voltammogram and LB film of 8A5H-DMPC mixture was found to be caused by a reversible oxidation-reduction process.
We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with 4-octyl-4'-(5-carboxylpentamethyleneoxy)azobenzene (denoted as 8A5H) and phospholipid(L-α-dimyristoylphosphatidylcholine, denoted as DMPC). LB films of 8A5H monolayer and 8A5H-DMPC were deposited by using the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured by using cyclic voltammetry with a threeelectrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at various concentrations(0.1, 0.5, and 1.0mol/L) of NaClO4 solution. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650mV and measured to the initial point. The scan rates were 50, 100, 150 and 200mV/s, respectively. As a result, LB films of 8A5H monolayer appeared irreversible process caused by only the oxidation current from the cyclic voltammogram and LB films of 8A5H-DMPC mixture were found to be caused by a reversible oxidation-reduction process.
Water-soluble cutting fluids are used for processing of aluminium materials. This short article describes properties of new additives of water-soluble cutting fluids for aluminium materials. Various Diels-Alder adducts of unsaturated fatty acids with acrylic acid of maleic anhydride were prepared by thermal reactions. Triethanolamine salts of Diels-Alder adducts of dehydrated castor oil fatty acids with acrylic acid or maleic anhydride showed excellent anti-corrosion property of aluminium materals. These thermal adducts showed anti-rust property for cast-iron chips, too.