검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 760

        262.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and mechanical properties of hot-pressed composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at , showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.
        4,000원
        263.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni based() bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to in the WC-Co hard metal mold.
        4,000원
        264.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.
        4,000원
        265.
        2006.09 구독 인증기관·개인회원 무료
        The effect of Cu on the hydrogen reduction of powders was investigated by measuring the humidity change during a non-isothermal process of hydrogen reduction. The presence of Cu induced a shift in the reduction temperature and strongly affected the reduction processes of , which comprised the contained chemical vapor transport of . This study suggests that the surface of the Cu grains acts as a nucleation site for the reduction of to particles from or . Such an activated reduction process results in the deposition of Mo and particles on the surface of the Cu.
        266.
        2006.09 구독 인증기관·개인회원 무료
        Several practical applications of melt-textured bulk superconductors require the complex-shaped products such as curved, ring-shaped, and drilled blocks rather than simple shaped pellets. However, melt-textured bulk superconductors are often damaged when they are cut, grinded, or drilled. With the aim of reducing such damages, we have investigated the preparation of the complex-shaped bulk superconductors by previously machining binder-added precursors and pre-sintered precursors. We could produce various complex-shaped bulk superconductors without cracking from these machined precursors
        267.
        2006.09 구독 인증기관·개인회원 무료
        Sintered composites of Al-8wt%Cu-10vol%SiCp were deformed by repressing or equal channel angular pressing(ECAP) at room temperature, and . Repressing produced more densification than ECAP but resulted in much lower transverse rupture strengths. In both cases, deformation at room temperature and , resulted in much lower strengths than deformation at , and also caused the fracturing of some SiC particles. The higher bend strengths and less SiC fracturing at are attributable to the presence of an Al-Cu liquid phase during deformation. The employment of copper coated SiC instead of bare SiC particles for preparing the composites was found not improving the properties.
        269.
        2006.09 구독 인증기관·개인회원 무료
        We developed the copper core ball electroplated with Sn-Ag-Cu of the eutectic composition which used mostly as Pb free solder ball with high reliability. In order to search for the practicality of this developed copper core ball, the evaluation was executed by measuring the initial joint strength of the sample mounted on the substrate and reflowed and by measuring the joint strength of the sample after the high temperature leaving test and the constant temperature and the humidity leaving test. This evaluation was compered with those of the usual other copper core balls electroplated with (Sn,Sn-Ag,Sn-Cu,Sn-Bi) and the Sn-Ag-Cu solder ball.
        270.
        2006.09 구독 인증기관·개인회원 무료
        Dispersion-strengthened copper with was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly
        271.
        2006.09 구독 인증기관·개인회원 무료
        Cu- nanocomposite powders were synthesized by combining high-energy ball-milling of Cu-Ti-B mixtures and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.% powders were produced by SHS reaction and ball-milled. The milled SHS powder was mixed with Cu powders by ball milling to produce Cu-2.5wt.% composites. particles less than 250nm were formed in the copper matrix after SHS-reaction. The releative density, electrical conductivity and hardness of specimens sintered at were nearly 98%, 83%IACS and 71HRB, respectively. After heat treatment at 850 to for 2 hours under Ar atmosphere, hardness was descedned by 15%. Our Cu- composite showed good thermal stability at eleveated temperature.
        273.
        2006.09 구독 인증기관·개인회원 무료
        We studied formation of nanostructured -Cu composites under shock wave conditions. We investigated the influence of preliminary mechanical activation (MA) of Ti-B-Cu powder mixtures on the peculiarities of the reaction between Ti and B under shock wave. In the MA-ed mixture the reaction proceeded completely while in the non-activated mixture the reagents remained along with the product . titanium diboride. The size of titanium diboride particles in the central part of the compact was 100-300 nm.
        274.
        2006.09 구독 인증기관·개인회원 무료
        Conductive pastes consist of conductive fillers( Au, Ag, Ni, Cu etc.), organic binders, solvents and additives. Meanwhile, there are some metal powders such as copper, nickel etc that are used for pastes which have serious surface corrosion problems. This problem leads to change of the color and decrease in conductivity and affect storage stability of conductive pastes. By using silane coupling agent and dispersion agent, we can ensure both the corrosion stability and long term storage stability, and enhance the high performance electrical and mechanical properties of EMI shielding silicone sealant.
        275.
        2006.09 구독 인증기관·개인회원 무료
        Bend tests were performed at temperatures between 77 and 473K for W-19vol%Cu, W-22vol%Ag and W-19vol%(BAg-8) composites. Yield and maximum strengths and ductility of the composite were discussed in terms of microstructure and fractography. Results are summarized as follows. (1) Almost no difference was recognized in yield strength between the composites. In contrast, a large difference was recognized in maximum strength and ductility between the composites. (2) Inferior mechanical properties of W-Ag composite to W-Cu composite are attributed to heterogeneous distribution of Ag-phases, whilst inferior mechanical properties of W-(BAg-8) composite to W-Cu composite are attributed to large pores at grain boundaries.
        277.
        2006.09 구독 인증기관·개인회원 무료
        Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, Al2Cu and Al2CuMg intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.
        279.
        2006.09 구독 인증기관·개인회원 무료
        Ti-Cu-Ni-Sn quaternary amorphous alloys of Ti50Cu32Ni15Sn3, Ti50Cu25Ni20Sn5, and Ti50Cu23Ni20Sn7 composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for Ti50Cu32Ni15Sn3 and Ti50Cu25Ni20Sn5 after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of Ti50Cu32Ni15Sn3, Ti50Cu25Ni20Sn5, and Ti50Cu23Ni20Sn7.
        280.
        2006.09 구독 인증기관·개인회원 무료
        Mg55Y15Cu30 metallic glass powders were prepared by the mechanical alloying of pure Mg, Y, and Cu after 10 h of milling. The thermal stability of these Mg55Y15Cu30 amorphous powders was investigated using the differential scanning calorimeter (DSC). Tg ,Tx , and ΔTx are 442 K, 478 K, and 36 K, respectively. The as-milled Mg55Y15Cu30 powders were then consolidated by vacuum hot pressing into disk compacts with a diameter and thickness of 10 mm and 1 mm, respectively. This yielded bulk Mg55Y15Cu30 metallic glass with nanocrystalline precipitates homogeneously embedded in a highly dense glassy matrix. The pressure applied during consolidation can enhance thermal stability and prolong the existence of amorphous phase within Mg55Y15Cu30 powders.