간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.34 No.2 (2024년 3월) 27

21.
2024.03 구독 인증기관 무료, 개인회원 유료
Development of carbon-based biocompatible and flexible nanosensors is essential in different practical applications. Humidity sensor is crucial in different fields among them. Herein, a unique metal-free nanosensor comprised of 2D-graphitic carbon nitride (CN) decorated with 0D-carbon dots (C-dots) was fabricated to monitor humidity in human breath. Simple polymerization and carbonization techniques were used to synthesize nitrogen enriched heterostructure (CN@C-dots). The synthesized heterostructure showed excellent physicochemical properties including high surface area, hydrophilic functionalities and more active sites that were responsible for enhanced humidity sensing. The fabricated nanosensor indicated excellent resistivity against humidity due to diffused proton hoping through inhibition of ion transfer from multiple water layers. The interaction mechanism was explained through simple hydrogen bonding and defective site chemisorbed oxygen participation in physisorbed humidity molecules.
4,500원
22.
2024.03 구독 인증기관 무료, 개인회원 유료
Determination of Idarubicin (IDA) as an anthracycline derivative and extensively used treatment of leukemia was investigated by electrochemical method using carbon paste electrode (CPE) modified with NiO/SWCNTs nanocomposite and 1-ethyl-3-methylimidazolium chloride (EMCl). The NiO/SWCNTs nanocomposites and EMCl play an important catalytic role in improving the electron transfer process at surface of CPE to monitoring of IDA. Electrochemical method was used to investigation redox behavior of IDA at surface of the NiO/SWCNTs/EMCl/CPE. The oxidation signal of IDA amplified by modification of CPE by NiO/SWCNTs and EMCl was about 4.3 times and NiO/SWCNTs/EMCl/CPE detected IDA in concentration range of 0.001–160 μM with detection limit of 0.5 nM, respectively. The evaluation of analytical and recovery data confirms the mentioned method was completely validated and successfully employed for the determination of IDA in real samples.
4,000원
23.
2024.03 구독 인증기관 무료, 개인회원 유료
Wearable sensors with highly flexible and sensitive characteristics have attracted research interests in the promising field of electronic skin, health monitoring, and soft robotics. However, the developing of high-performance piezoresistive sensor is full of challenges due to the expensive equipment and complex procedures. Herein, we fabricate a reduced graphene oxide/ polyurethane composite sponge (GPCS) pressure sensor combining with dual-templates. The polyurethane (PU) sponge provides an elastic structure as solid template. Meanwhile, air bubbles as gas template are used to uniformly disperse graphene oxide (GO) sheets. The burst of air bubbles in the process of thermal treatment makes GO coating on the surface of PU skeleton, avoiding the aggregation of reduced graphene oxide. Therefore, the GPCS exhibits excellent compressibility and uniform coating structure. As a result, it also possesses high sensitivity (Gauge Factor = 3.00 in the range of 0–10% strain), fast response time (35 ms), and excellent cyclic piezoresistive stability (5000 loading–unloading cycles) when applied in the pressure sensor field. Moreover, the flexible wearable stress–strain sensor assembled by the GPCS can be easily adhered on the surface of human skin and precisely detect human movements such as elbow bending and finger bending. Such low-cost procedure and excellent sensing performance enable GPCS sensor to demonstrate tremendous application potential in the field of advanced wearable devices.
4,000원
24.
2024.03 구독 인증기관 무료, 개인회원 유료
This study aimed to identify and analyze the effects of both isothermal heat treatment temperature and residence time on the formation of mesophase in coal tar pitch, especially with respect to its microstructural and crystalline evolution. The formation and growth of mesophase resulted in a decrease in d002 and an increase in Lc, and the degree of such variation was larger when the isothermal heat treatment temperature was higher. In isothermally heat-treated pitch, two distinct domains were observed: less developed crystalline carbon (LDCC) and more developed crystalline carbon (MDCC). When pitch was isothermally heat-treated at 375 °C for 20 h, d002 was 4.015 Å in the LDCC and 3.515 Å in the MDCC. Higher isothermal heat-treatment temperatures accelerated the formation, growth, and coalescence of mesophase. Indeed, in the pitch specimen isothermally heat-treated at 425 °C for 20 h, d002 was 3.809 Å in the LDCC and 3.471 Å in the MDCC. The evolution of mesophase was characterized by pronounced inflection points in d002 curves. It was found that the emergence of these inflection points coincided with pronounced changes in the microstructure of mesophase. This finding confirmed the relationship between inflection points in d002 and the microstructure of mesophase.
4,200원
25.
2024.03 구독 인증기관 무료, 개인회원 유료
The untreated effluent dropping into the environment from various textile industries is a major issue. To solve this problem, development of an efficient catalyst for the degradation of macro dye molecules has attracted extensive attention. This work is mainly focused on the synthesis of nickel–manganese sulfide decorated with rGO nanocomposite (Ni–Mn-S/rGO) as an effective visible photocatalyst for degradation of textile toxic macro molecule dye. A simple hydrothermal method was used to synthesize Ni–Mn-S wrapped with rGO. The prepared composites were characterized using various techniques such as X-ray diffraction (XRD), high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infra-red spectrometer (FTIR), and ultra violet–visible (UV–Vis) spectroscopy. The photocatalytic performance of nickel sulfide (NiS), manganese sulfide (MnS), nickel–manganese sulfide (Ni–Mn-S), and Ni–Mn-S/rGO nanocomposite was assessed by analyzing the removal of acid yellow (AY) and rose bengal (RB) dyes under natural sun light. Among these, the Ni–Mn-S/rGO nanocomposite showed the high photocatalytic degradation efficiency of AY and RB dyes (20 ppm concentration) with efficiency at 96.1 and 93.2%, respectively, within 150-min natural sunlight irradiation. The stability of photocatalyst was confirmed by cycle test; it showed stable degradation efficiency even after five cycles. This work confirms that it is an efficient approach for the dye degradation of textile dyes using sulfide-based Ni–Mn-S/rGO nanocomposite.
4,600원
26.
2024.03 구독 인증기관 무료, 개인회원 유료
In this investigation, we synthesized a novel quaternary nanocomposite, denoted as RGO-Ba(OH)2/CeO2/TiO2, through a straightforward and cost-effective solid-state synthesis approach. The as-prepared composites underwent a series of comprehensive characterizations, including XRD, FTIR, TGA-DTA, XPS, SEM, EDAX, and TEM analyses, affirming the successful synthesis of a quaternary nanocomposite with well-interconnected nanoparticles, nanorods, and sheet-like structures. Further, our electrochemical performance evaluations demonstrated that the electrochemical capacitance of the RGO-Ba(OH)2/CeO2/ TiO2 nanocomposite achieved an impressive value of 445 F g− 1 at a current density of 1.0 A g− 1, particularly when the mass ratio of CeO2 and TiO2 was maintained at 90:10. Furthermore, the specific capacitance retained a remarkable 65% even after 2000 cycles at a current density of 6 A g− 1 in a 3 mol KOH electrolyte. Comparatively, this outstanding electrochemical performance of the RGO-Ba(OH)2/CeO2/TiO2 (90:10) nanocomposite can be attributed to several factors. These include the favorable electrical conductivity and large specific surface area provided by graphene, TiO2, and Ba(OH)2, the enhanced energy density and extended cycle life resulting from the presence of CeO2, and the synergistic contributions among all four components. Therefore, the RGO-Ba(OH)2/CeO2/TiO2 nanocomposite emerges as a highly promising electrode material for supercapacitors.
4,000원
27.
2024.03 구독 인증기관 무료, 개인회원 유료
4-Nitrophenol (4NP) is a vital intermediate in organic industries, and its exploitation creates serious environmental issues. We propose a fluorescence quenching-based strategy with nitrogen and sulfur co-doped carbon dots (NS-CDs) for highly sensitive 4NP detection with excellent selectivity. The NS-CDs are produced through the hydrothermal process, in which citric acid serves as a carbon source and cysteamine hydrochloride as a source of N and S. The effect of doping was also studied by synthesizing undoped CDs and examining their properties. As-developed NS-CDs exhibit a bright cyan blue color with maximum emission centered at 465 nm. The fluorescence of NS-CDs is significantly quenched in an approximately linear fashion with increasing 4NP concentration (7.5–97.5 μM). The inner filter effect (IFE) and static quenching (SQ) between NS-CDs and 4NP are responsible for such fluorescence reduction. The fluorimetry technique enables the quantification of 4NP with a limit of detection (LOD) of about 0.028 μM. Moreover, the fluorescence quenching is tested for several other chemical compounds but they generate false quenching signals; only 4NP leads to fluorescence quenching of NS-CDs, demonstrating excellent selectivity. The “turn-off” fluorescence properties and visually apparent color change of the fluorescent probe reveal the excellent performance for 4NP sensing. The NS-CDs’ capability of quantifying 4NP in real water samples (tap water and drinking water) produces an excellent recovery rate ranging between 96.24 and 98.36%.
4,500원
1 2