간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.32 No.1 (2022년 2월) 25

21.
2022.02 구독 인증기관 무료, 개인회원 유료
The electrical resistances of small-sized activated carbon fiber (ACF) fabric (specific surface area: 1244.7 m2/ g, average pore diameter: 1.92 nm) and felt (specific surface area: 1321.2 m2/ g, average pore diameter: 2.21 nm) sensors were measured in a temperature and humidity controlled gas chamber by CO2 adsorption at different surrounding CO2 concentrations (3000–10,000 ppm). The electrical resistances of ACF sensors decreased linearly as the increase of temperature and decreased exponentially as the increase of humidity in the ambient atmospheric chamber. The electrical resistances of ACF rapidly decreased within 4 s and an equilibrium state was achieved within 10 s due to the very rapid CO2 adsorption at room temperature and 40% humidity. Comparing the difference in electrical resistance values measured during injection of similar concentrations of CO2 after reaching the equilibrium value, the fabric exhibited a significant change, whereas the felt did not, even though it had a relatively larger specific surface area. The reason is that micropore volume greatly affected the amount of CO2 adsorbed, whereas the specific surface area did not affect it as much. Therefore, ACF fabric with large micropores (> 2.0 nm) can be developed and used as CO2 sensors in small rooms such as a passenger vehicles.
4,000원
22.
2022.02 구독 인증기관 무료, 개인회원 유료
Despite having a low electrical conductivity, graphene oxide (GO) is used as an anode material in lithium-ion batteries (LIBs) owing its good processability in large quantities. GO is reduced by chemical or thermal treatments to enhance its electrical conductivity. In this study, high-performance GO anodes with polydopamine (PDA) and polyethylenimine (PEI) as binders were fabricated. Gamma (γ)-ray irradiation was applied to the GO–PDA–PEI hybrid sheets to covalently cross-link the GO sheets and binders with an amide bond. The covalent crosslinking was confirmed by Fourier-transform infrared spectroscopy analysis. Further, X-ray photoelectron spectroscopy results showed that γ-ray irradiation produced a reduced GO sheet, which resulted in an increase in the electrical conductivity by 30%. By characterizing the electrochemical properties, we found that the γ-ray irradiation facilitates the stability and increases the charge/discharge capacity by crosslinking GO and PDA–PEI binders and reducing the GO sheets.
4,000원
23.
2022.02 구독 인증기관 무료, 개인회원 유료
The poor durability issue of polymer electrolyte membrane fuel cells is a major concern in terms of their commercialization. To understand the degradation mechanism of the catalysts, an accelerated durability test (ADT) was conducted according to the protocol established by internationally accredited organizations. However, reversible and irreversible factors contributing to the loss of activity have not yet been practically segregated because of the limitations of a batch-type three-electrode system, leading to the misunderstanding of the deactivation mechanism. In this study, we investigated the effect of a fresh electrolyte on the ADT and recovery process. When the fresh electrolyte was used at every range of the cycle, the chances of incorrect detection of dissolved CO and Pt ions in the electrolyte were very low. When the same electrolyte was used throughout the test, the accumulated Pt ions were deposited on the surface of the Pt nanoparticles or carbon support, affording an increased electrochemical surface area (ECSA) of Pt. Therefore, we believe that periodic replacement by a fresh electrolyte or a continuous-flow electrolyte is essential for the precise determination of the structural and electrochemical changes in Pt/C catalysts.
4,000원
24.
2022.02 구독 인증기관 무료, 개인회원 유료
Silicon oxide (SiOx) has been considered one of the most promising anode materials for lithium-ion batteries due to having a higher capacity than the commercial graphite anodes. However, its practical application is hampered by very large volume variations. In this work, pyrolysis fuel oil is the carbon coating precursor, and physical vapor deposition (PVD) is performed on SiOx at 200 and 400 °C (SiOx@C 200 and SiOx@C 400), followed by carbonization at 950 °C. SiOx@C 200 has a carbon coating layer with a thickness of ~ 20 nm and an amorphous structure, while that of SiOx@C 400 is approximately 10 nm thick and has a more semigraphitic structure. The carbon-coated SiOx anodes display better charge–discharge performance than the pristine SiOx anode. In particular, SiOx@C 200 shows the highest reversible capacity compared with the other samples at high C-rates (2.0 and 5.0 C). Moreover, SiOx@C 200 exhibits excellent cycling stability with a capacity retention of 90.2% after 80 cycles at 1.0 C. This result is ascribed to the suppressed volume expansion by the PFO carbon coating on SiOx after PVD.
4,000원
25.
2022.02 구독 인증기관 무료, 개인회원 유료
Conductive carbon cloths (CCs) have been great attention as a promising current collector for flexible supercapacitors that supply power to portable and wearable electronics. However, the hydrophobic surface and weak adhesion with active materials has limited to be adopted as the binder-free and flexible electrode with mechanical/electrochemical stability. In this work, we demonstrate preparation of binder-free and flexible electrodes based on polyaniline (PANI) on carbon cloth. Polydopamine (PDA) layer are used to impart hydrophilicity, leading to uniform growth of PANI on the hydrophobic surface of carbon. Furthermore, PDA layer improves adhesion strength between PANI and carbon substrates, which allows for superior mechanical stability under ultrasonic condition. PANI-based flexible electrode shows high areal capacitance (160.8 mF cm− 2 at 0.5 mA cm− 2), good rate capability (71.1% even at high current density of 10 mA cm− 2), and long-term cycling stability (82.6% capacitance retention after 1500 cycles). Furthermore, a quasi-solid-state flexible supercapacitor reveals remarkable mechanical flexibility and durability, with superior capacitance retention (~ 100%) in bent state and after repetitive 1000 cycles.
4,000원
1 2