간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.34 No.3 (2024년 6월) 25

21.
2024.06 구독 인증기관 무료, 개인회원 유료
This study prepares highly porous carbon (c-fPI) for lithium-ion battery anode that starts from the synthesis of fluorinated polyimide (fPI) via a step polymerization, followed by carbonization. During the carbonization of fPI, the decomposition of fPI releases gases which are particularly from fluorine-containing moiety (–CF3) of fPI, creating well-defined microporous structure with small graphitic regions and a high specific surface area of 934.35 m2 g− 1. In particular, the graphitic region of c-fPI enables lithiation–delithiation processes and the high surface area can accommodate charges at electrolyte/electrode interface during charge–discharge, both of which contribute electrochemical performances. As a result, c-fPI shows high specific capacity of 248 mAh g− 1 at 25 mA g− 1, good rate-retention performance, and considerable cycle stability for at least 300 charge–discharge cycles. The concept of using a polymeric precursor (fPI), capable of forming considerable pores during carbonization is suitable for the use in various applications, particularly in energy storage systems, advancing materials science and energy technologies.
4,000원
22.
2024.06 구독 인증기관 무료, 개인회원 유료
The detailed understanding of fluorescence emission processes is still unclear. This study demonstrates Aegle marmelos derived luminescent heteroatoms (N, Ca, K) doped carbon quantum dots (CQDs) using an economically and ecologically sustainable synthesis process without the necessity for any doping precursors due to its phytochemical, vitamin and mineral content. Carboxyl functionalization was done by adding lemon juice to the fruit extract. The morphological, physiochemical, compositional, crystallinity, and surface functional groups having heteroatom doped CQDs were analysed by HRTEM, EDX, XPS, XRD, FTIR etc. Besides, CQDs exhibited pH and solvent-dependent tuneable fluorescence characteristics. In fact, beyond pH 7.77, a protonation-deprotonation-driven red-shift was observed together with a decrease in the contribution of prominent peaks. Meanwhile, the features of solvatochromic fluorescence were examined in a range of aprotic and protic solvents with low and high polarity. Based on the studied Kamlet–Taft parameters and the obtained spectroscopic characterizations, a suitable fluorescence emission mechanism is provided. The observed solvatochromic fluorescence is thought to be caused by a combination of dipole moment polarisation, intramolecular charge transfer processes with or without H-bond stabilisation via the interaction of heteroatoms doped CQDs with solvent mediated by electron donation and acceptance from various surface functional groups such as hydroxyl, carboxyl with solvent molecules. Hence, this study is believed to promote the development of eco-tuneable fluorescent heteroatom doped CQDs and provide further insights into the fundamental fluorescence mechanisms, which include the relationship between morphology, surface properties and plausible quantum effects between CQDs and solvents.
4,000원
23.
2024.06 구독 인증기관 무료, 개인회원 유료
Copper-coated carbon fibers have excellent conductivity and mechanical properties, making them a promising new lightweight functional material. One of the main challenges to their development is the poor affinity between carbon fiber and metals. This paper selects different carbon fibers for copper electroplating experiments to study the effect of carbon fiber properties on the interface bonding performance between the copper plating layer and carbon fibers. It has been found that the interfacial bonding performance between copper and carbon fiber is related to the degree of graphitization of carbon fiber. The lower the degree of graphitization of carbon fiber, the smaller the proportion of carbon atoms with sp2 hybrid structure in carbon fiber, the stronger the interfacial bonding ability between carbon fiber and copper coating. Therefore, carbon fiber with lower graphitization degree is conducive to reducing the falling off rate of copper coating and improving the quality of copper coating, and the conductivity of copper-plated carbon fibers increases with the decrease of graphitization degree of carbon fibers. The conductivity of copper-plated carbon fibers increases by more than six times when the graphitization degree of carbon fibers decreases by 23.9%. This work provides some benchmark importance for the preparation of highquality copper-plated carbon fibers.
4,000원
24.
2024.06 구독 인증기관 무료, 개인회원 유료
In this study, the aromatic carbon content of epoxy resin (EP) increased via carbon tar pitch (CTP) modification, and the CTP occurred self-polymerization reaction. The carboxyl and hydroxyl groups of CTP and the hydroxyl and carboxyl groups of EP occurred chemical cross-linking reaction. CTP and graphitization treatment promoted EP CF carbon crystal growth. The graphitization degree of pure EP CF and 40 wt% CTP modified EP CF are 8.42% and 44.21%, respectively. With the increase CTP content, the cell size, ligament junction and density of graphitization modified EP CF gradually increased, while the number of pores and cells gradually decreased. The cell size, ligament junction size and density of 40 wt% CTP modified graphitization EP CF increased to 1200 μm, 280 μm and 0.5033 g/cm3, respectively. EP CF exhibits entangling carbon ribbon and isotropic amorphous carbon. The 40 wt% CTP modified EP CF is composed of evenly distributed amorphous resin carbon and graphite domain CTP carbon. The graphitization modified EP CF improved electrical conductivity, and the electrical conductivity of 40 wt% CTP modified EP CF is 126.6 S/m. The compressive strength can be decided by EP carbon strength and its char yield, and graphitization 40 wt% CTP modified EP CF reached 4.9 MPa. This study provides some basis for preparation and application of CTP modified EP CF.
4,000원
25.
2024.06 구독 인증기관 무료, 개인회원 유료
For the regeneration of diesel particulate filters (DPF) using non-thermal plasma (NTP), both cost-effectiveness and regeneration efficiency should be raised. This study compared and contrasted the physicochemical characteristics of carbon black and engine particulate matter (PM). After carbon black was put into the DPF, an experimental setup for the oxidation of PM using NTP was created. The findings showed that carbon black and PM samples had comparable oxidation traits, micronanostructures, and C/O elemental ratios. O3, the main active species in NTP, was susceptible to heat breakdown, and the rate of decomposition of O3 increases with increasing temperature. The removal effectiveness of carbon black first improved and subsequently declined with an increase in the NTP injection flow rate during offline DPF regeneration using NTP at room temperature. A relatively high carbon black removal efficiency of 85.1% was achieved at an NTP injection flow rate of 30 L/min.
4,800원
1 2