간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.34 No.1 (2024년 2월) 42

21.
2024.02 구독 인증기관 무료, 개인회원 유료
The current study explores the possibility of graphene as a protective layer on the zinc substrate through an optimized electrophoretic deposition process. Graphene has been synthesized from H2SO4, HNO3, and HClO4 solutions by an electrochemical exfoliation route. This method is known for providing a scalable and economical approach to the synthesis of graphene. The exfoliated graphene nano-sheets were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, UV–visible, and field emission scanning electron microscope to evaluate its properties. The three different synthesized forms of graphene nano-sheets were electrophoretically deposited onto Zn substrates at two different potentials. Scratch testing was employed to check the adhesion quality of the coatings. The corrosion behaviour of Zn and graphene-coated Zn substrates was studied in borate buffer and 3.5 wt% NaCl solutions through potentiodynamic polarization and electrochemical impedance spectroscopy. It
5,100원
22.
2024.02 구독 인증기관 무료, 개인회원 유료
Agriculture is a pivotal player in the climate change narrative, contributing to greenhouse gas (GHG) emissions while offering potential mitigation solutions. This study delved into agriculture’s climate impact. It comprehensively analysed emissions from diverse agricultural sources, carbon sequestration possibilities, and the repercussions of agricultural emissions on climate and ecosystems. The study began by contextualising the historical and societal importance of agricultural GHG emissions within the broader climate change discourse. It then discussed into GHG emitted from agricultural activities, examining carbon dioxide, methane, and nitrous oxide emissions individually, including their sources and mitigation strategies. This research extended beyond emissions, scrutinising their effects on climate change and potential feedback loops in agricultural systems. It underscored the importance of considering both the positive and negative implications of emissions reduction policies in agriculture. In addition, the review explored various avenues for mitigating agricultural emissions and categorised them as sustainable agricultural practices, improved livestock management, and precision agriculture. Within each category, different subsections explain innovative methods and technologies that promise emissions reduction while enhancing agricultural sustainability. Furthermore, the study addressed carbon sequestration and removal in agriculture, focussing on soil carbon sequestration, afforestation, and reforestation. It highlighted agriculture’s potential not only to reduce emissions, but also to serve as a carbon reservoir, lowering overall GHG impact. The research also scrutinised the multifaceted nature of agriculture, examining the obstacles hindering mitigation strategies, including socioeconomic constraints and regulatory hurdles. This study emphasises the need for equitable and accessible solutions, especially for smallholder farmers. It envisioned the future of agricultural emissions reduction, emphasising the advancements in measurement, climate-smart agricultural technologies, and cross-sectoral collaboration. It highlighted agriculture’s role in achieving sustainability and resilience amid a warming world, advocating collective efforts and innovative approaches. In summary, this comprehensive analysis recognised agriculture’s capacity to mitigate emissions while safeguarding food security, biodiversity, and sustainable development. It presents a compelling vision of agriculture as a driver of a sustainable and resilient future.
6,300원
23.
2024.02 구독 인증기관 무료, 개인회원 유료
This work utilizes the commercial finite element software ABAQUS to investigate the factors influencing the mechanical behavior of tantalum carbide (TaC)-based/graphite fibrous monolithic ceramics (FMCs), such as core/shell volume ratio and fiber orientation. The good compliance between experimental and simulated results demonstrates the suitability of the finite element software ABAQUS for exploring mechanical properties in FMCs. According to the results, it was observed that the bending strength of TaC-based/graphite FMC decreased with the change in fiber orientation from 0° to 90°. The displacement amount in the core/shell volume ratio of 75/25 ( C75S25) sample with a fiber orientation of 90° was maximum (with a value of 0.0524 mm), indicating that crack propagation occurred later. Therefore, the sample exhibited better resistance to failure. Generally, C75S25 specimens started to crack later than the core/shell volume ratio of 65/35 ( C65S35) in both fiber orientations and released more energy during crack initiation. Additionally, when the 0°-fiber-oriented specimen failed, more energy was released than the [90°] sample with the same core/shell volume ratio.
4,200원
24.
2024.02 구독 인증기관 무료, 개인회원 유료
Disposable masks manufactured in response to the COVID-19 pandemic have caused environmental problems due to improper disposal methods such as landfilling or incineration. To mitigate environmental pollution, we suggest a new process for recycling these disposable masks for ultimate application as a conductive material in lithium-ion batteries (LIBs). In our work, the masks were chemically processed via amine functionalization and sulfonation, followed by carbonization in a tube furnace in the Ar atmosphere. The residual weight percentages, as evaluated by thermogravimetric analysis (TGA), of the chemically modified masks were 30.6% (600 °C, C-600), 24.5% (750 °C, C-750), and 24.1% (900 °C, C-900), respectively, thereby demonstrating the possibility of using our proposed method to recycle masks intended for disposal. The electrochemical performance of the fabricated carbonized materials was assessed by fabricating silicon/graphite (20:80) anodes incorporating these materials as additives for use in LIBs. Using a coin-type half-cell system, cells with the aforementioned carbonized materials exhibited initial capacities of 553 mAh/g, 607 mAh/g, and 571 mAh/g, respectively, which are comparable to those of commercial Super P (591 mAh/g). Cell cycled at the rate of 0.33 C with C-600, C-750, and C-900 as additives demonstrated capacity retention of 53.2%, 47.4%, and 51.1%, respectively, compared with that of Super P (48.3%). In addition, when cycled at rates from 0.2 to 5 C, the cells with anodes containing the respective additives exhibited rate capabilities similar to those of Super P. These results might be attributable to the unique surface properties and morphologies of the carbonized materials derived from the new recycling procedure, such as the size and number of heteroatoms on the surface.
4,200원
25.
2024.02 구독 인증기관 무료, 개인회원 유료
Traditional piles used for deep foundation, such as steel, concrete, and timber, are susceptible to corrosion and a reduction in structural capacity over time. This has led to the development of new materials like concrete-filled FRP piles (CFFP). CFFP is a composite pile filled with concrete and covered with a fiber-reinforced plastic (FRP) shell, providing non-corrosive reinforcement and protection to the concrete. As a result, CFFP is a highly promising candidate for implementation in various fields due to its structural advantages and necessity. Compared to traditional concrete piles, CFFP can be installed with less damage and a lower blow range due to its elastic modulus, damping ratio, and specific weight. The bearing capacity of a pile is influenced by various factors, including its stiffness, residual stress, and axial load resistance. Due to competitive pricing, glass fiber has been widely utilized, and there is a growing interest regarding carbon-fiber-reinforced concrete piles due to the excellent mechanical properties of carbon fiber. The remarkable stiffness and strength attributes of carbon fibers are evident in CFRP-confined piles, which present a notably wide range of load-bearing capacities, boasting an ultimate axial load capacity ranging from 500 to 4000 kN. Furthermore, CFFPs have been confirmed to have superior lateral load resistance compared to conventional piles, attributed to the reinforcement provided by FRP materials. Conventional piles face a challenge in that their structural characteristics deteriorate in the corrosive marine environment, with a projected lifespan of less than 20 years. In contrast, the service life of CFFPs is estimated to range from 50 to 75 years.
4,800원
26.
2024.02 구독 인증기관 무료, 개인회원 유료
Porous graphene oxide (P-GO) was successfully synthesized by using a simple glucose mediated hydrothermal method form prepared graphene oxide (GO). Then the P-GO was characterized by X-ray Powder Diffraction (XRD), Fourier-Transform Infrared (FITR), Raman, Brunauer–Emmett–Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) analysis to determine the crystallinity, surface functionality, surface defect, surface area and porous nature of the material. For the comparative properties studies with P-GO, the synthesised GO was also characterised using the aforementioned analytical techniques. The formation of macroporous 2D sheet-like structure of P-GO with pore size diameters of 0.2–0.5 μm was confirmed by FESEM and TEM images. The surface area of P-GO was found to be 1272 m2/ g which is much higher compare to GO (i.e., 172 m2/ g) because of porous structure. P-GO was used for the adsorptive removal of F− ions from water using batch adsorption method. The highest adsorption occurs in the pH range of 5–7 with maximum adsorption capacity of 1272 mg/g. The experimental data revealed that the adsorption process obeys Langmuir monolayer isotherm model. The kinetic analysis revealed that the adsorption procedure is extremely rapid and mainly fit to the Pseudo-second-order (PSO) model. The effect of co-existing ions on fluoride adsorption capacity by P-GO decreases in the following order: PO4 3− > CO3 2− > SO4 2− > HCO3 − > NO3 − > Cl−. The mechanism of adsorption of fluoride onto the P-GO surface includes electrostatic interactions and hydrogen bonding.
4,200원
27.
2024.02 구독 인증기관 무료, 개인회원 유료
In order to prevent early distress in asphalt pavement and save on subsequent operational and maintenance costs, modifying asphalt is an effective approach. Styrene–butadiene–styrene (SBS) block copolymers, due to their excellent physicochemical properties, have become a mature and widely used asphalt modifier. Carbon nanotubes (CNTs) possess advantages such as a large specific surface area and high modulus, which, when incorporated into asphalt, can enhance its deformation resistance. To analyze the effect of incorporating CNTs on SBS-modified asphalt (SBS-A), this study analyzed the influence of different CNT concentrations on the high and low-temperature performance and aging properties of SBS-A through penetration, softening point, ductility, dynamic shear rheometry, and short-term aging tests. The optimal CNT concentration was determined to be 1.0%. Furthermore, the changes in the modified asphalt during the aging process were analyzed using infrared spectroscopy.
4,000원
28.
2024.02 구독 인증기관 무료, 개인회원 유료
In this work, the trend in the performance of carbon fiber (CF) and its composite during self-polymerization of polydopamine (PDA) at carbon fiber surface was investigated by varying the self-polymerization time of dopamine in an aqueous solution. Research has shown that the PDA coating elevated the surface roughness and polarity of the inert fiber. The tensile strength of single carbon fiber was significantly improved, especially after 9 h of polydopamine self-polymerization, increasing by 18.64% compared with that of desized carbon fiber. Moreover, the interlaminar shear strength (ILSS) of CF-PDA9-based composites was 35.06% higher than that of desized CF-based composites. This research will provide a deep insight into the thickness and activated ingredients of dopamine oxidation and self-polymerization on interfacial compatibility of carbon fiber/epoxy resin composites.
4,000원
29.
2024.02 구독 인증기관 무료, 개인회원 유료
A thorough knowledge and understanding of the structure–property relationship between thermal conductivity and C-fiber morphology is important to estimate the behavior of carbon fiber components, especially under thermal loading. In this paper, the thermal conductivities of different carbon fibers with varying tensile modulus were analyzed perpendicular and parallel to the fiber direction. Besides the measurement of carbon fiber reinforced polymers, we also measured the thermal conductivity of single carbon fibers directly. The measurements clearly proved that the thermal conductivity increased with the tensile modulus both in fiber and perpendicular direction. The increase is most pronounced in fiber direction. We ascribed the increase in tensile modules and thermal conductivity to increasing anisotropy resulting from the orientation of graphitic domains and microvoids.
4,000원
30.
2024.02 구독 인증기관 무료, 개인회원 유료
Engineering of activated carbons (ACs) through chemical activation of organic precursors has been extensively studied for a wide variety of biopolymers, biomasses, wastes and other fossil-based precursors. Despite huge efforts to engineer evermore performant and sustainable ACs, “searching-for-the-best-recipe” type of studies are more the rule than the exception in the published literature. Emerging AC applications related to energy and gas storage require strict control of the AC properties and a better understanding of the fundamentals underlying their engineering. In this study, we provide new insights into the K2CO3 chemical activation of plant-based polyphenols—lignins and tannins—through careful thermoanalytical and structural analyses. We showed for the the first time that the reactivity of polyphenols during K2CO3 chemical activation depends remarkably on their purity and structural properties, such as their content of inorganics, OH functionalities and average molecular weight. We also found that the burn-off level is proportional to the K2CO3/ lignin impregnation ratio (IR), but only within a certain range—high impregnation ratios are not needed, unlike often reported in the literature. Furthermore, we showed for the first time that the K2CO3 chemical activation of different carbon surfaces from lignins and tannins can be modelled using simple global solid-state decomposition kinetics. The identified activation energies lay in the range of values reported for heterogenous gas-carbon surface gasification reactions ( O2-C, H2O- C, or CO2- C) in which the decomposition of C(O) surface complexes is the common rate-limiting step.
4,900원
31.
2024.02 구독 인증기관 무료, 개인회원 유료
This perspective article delves into the evolving landscape of non-viral vectors for efficient CRISPR delivery, addressing the challenges associated with viral vectors and highlighting the potential of carbon-based nanomaterials as promising alternatives. The article underscores the importance of design strategies in enhancing the interactions between CRISPR components and carbon-based nanomaterials. Various design approaches are explored, including the incorporation of modified nanoparticles between carbonic layers and the creation of unique morphologies to facilitate optimal CRISPR interactions. Specific case studies are presented to exemplify the effectiveness of carbon-based nanomaterials in CRISPR delivery. This perspective sheds light on the dynamic field of non-viral CRISPR delivery vectors, emphasizing the significance of design strategies and showcasing the promising outcomes achieved through the utilization of carbon-based nanomaterials. The provided insights contribute to the ongoing efforts to develop efficient and safe methods for gene delivery and therapy.
4,200원
32.
2024.02 구독 인증기관 무료, 개인회원 유료
Carbon quantum dots (CQDs), the newest member of carbonaceous nanomaterials, have drawn many considerations since the past two decades. A vast number of researchers made their efforts to demystify optical behavior of these materials despite being demanding. Nevertheless, their emission origin is still a controversial issue and this area suffers from a lack of hypothesis to explain the radiative transitions of these materials. White emissive CQDs are more prized among the other ones since it has provided an affordable warm white light source for many applications. In this paper, white emissive CQDs samples were prepared through a one-step hydrothermal synthesis approach. By using the advantage of possessing cellulosic networks in the Aloe Vera gel an in-situ matrix was created to encase CQDs particles. During the formation of CQDs particles, they were entrapped and created RGB nanoemitters in the cellulosic units. The leakage of the emitted photons during the radiative transitions followed by inner-filter effect (IFE) and self-/re-absorption acted as white light emissive sources. To scrutinize the validity and possibility of the hypothesis given in this paper, a series of spectroscopic analyses, including transmission electron microscopy (TEM), surface-enhanced Raman scattering (SERS), Fourier Transform Infrared (FT-IR), ultraviolet–visible (UV–Vis), and photoluminescence (PL) were conducted.
4,000원
33.
2024.02 구독 인증기관 무료, 개인회원 유료
In this study, the refinement of Multiwalled Carbon Nanotubes (MWCNTs) derived from chemical vapor decomposition is investigated. An ultrasonic pretreatment method is employed to disentangle carbon and metal impurities intertwined with MWCNTs. The pretreated MWCNTs exhibit a marginal decrease in C–O/C = O content from 8.9 to 8.8%, accompanied by a 2.5% increase in sp3 carbon content, indicating a mildly destructive pretreatment approach. Subsequently, selective oxidation by CO2 and hydrochloric acid etching are utilized to selectively remove carbon impurities and residual metal, respectively. The resulting yield of intact MWCNTs is approximately 85.65 wt.%, signifying a 19.91% enhancement in the one-way yield of pristine MWCNTs. Notably, the residual metal content experiences a substantial reduction from 9.95 ± 2.42 wt.% to 1.34 ± 0.06 wt.%, representing a 15.68% increase in the removal rate. These compelling findings highlight the potential of employing a mild purification process for MWCNTs production, demonstrating promising application prospects.
4,600원
34.
2024.02 구독 인증기관 무료, 개인회원 유료
Zeolitic imidazolate frameworks (ZIFs) along with carbon nanofibers and polyaniline composite have been explored as an electrochemical sensing platform in nitrite measurement at trace level. Owing to their topology, high surface area and porous structure, these metal–organic frameworks (MOFs) find widespread utility in different application domains. Nitrites are widely used as preservatives in dairy, meat products, and packaged food stuffs. They form N-nitrosamines, which are potential carcinogens and cause detrimental health effects. These ZIF-based MOFs along with carbon nanofibers and polyaniline have emerged as an efficient electrochemical sensing material. The composite has been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and BET surface area studies. The electrochemical performance of the composite has been evaluated by forming as a thin film of composite on the surface of glassy carbon electrode and studying its impedance as well as electrochemical sensing behavior. The sensor exhibited good analytical response in nitrite measurement with a limit of detection of 8.1 μM. The developed sensing platform has been successfully applied to quantify the nitrite levels from water samples. The results obtained are in good agreement with the results of standard protocol.
4,800원
35.
2024.02 구독 인증기관 무료, 개인회원 유료
In this paper, a simple, cost-effective, and efficient electrochemical sensor for molecular imprinting melatonin was established. The molecular imprinted films were formed by in situ electrochemical polymerization using molecular imprinting technology. The modification method, modification time and other parameters of the electrode were optimized. Under optimized conditions, the sensor responds to melatonin concentration in a linear range of 0–100 μM. The detection limit was 0.171 μM. In addition, the sensor has little response to interfering substances, such as uric acid, vitamin B6, vitamin C, and glucose, and can be tested in real samples. The recoveries were 98.73–101.60%.
4,000원
36.
2024.02 구독 인증기관 무료, 개인회원 유료
Graphene quantum dots (GQDs) are zero-dimensional carbonous materials with exceptional physical and chemical properties such as a tuneable band gap, good conductivity, quantum confinement, and edge effect. The introduction of GQDs in various layers of solar cells (SCs) such as hole transport layer (HTL), electron transport materials (ETM), cathode interlayer (CIL), photoanode materials (PAM), counter electrode (CE), and transparent conducting electrode (TCE) could improve the solar energy (SE) harvesting, separation and transportation of electrons and hole, thus ultimately enhance the overall performance and stability of SCs. The incorporation of GQDs in various layers such as HTL, ETM, CIL, PAM, CE, and TCE achieved photo conversion efficiencies (PCEs) of 18.63, 21.1, 12.81, 9.41, 8.1, and 3.66%, respectively. Furthermore, GQDs improved stabilities such as resistance to degradation for HTL (up to 77%), ETM (80%), resistance to UV light for ETM (94%), resistance to temperature in ETM (90%), and bending stabilities after 1000 cycles for HTL (88%) and for TCE (90%). There are reviews focused on the utilization of different carbon-structured materials such as graphene, carbon nanotubes (CNT), fullerenes, and carbon dots in SCs applications. More specifically, the utilization of GQDs for SCs is limited and yet to be explored in greater detail. This review mainly focuses on the recent advancement of various techniques of production of GQDs synthesis, utilization of GQDs in various layers like HTL, ETM, CIL, PAM, CE, and TCE for the enhancement of PCE, and the stability of SCs. As a result, we believe that an exclusive study on GQDs-sensitized solar cells (GQDSSCs) could provide an in-depth analysis of the recent progress, achievements, and challenges.
7,700원
37.
2024.02 구독 인증기관 무료, 개인회원 유료
Curing agents are critical components of aqueous epoxy resin systems. Unfortunately, its uses and applications are restricted because of its low emulsifying yields. Epoxy resins are frequently used in electrical devices, castings, packaging, adhesive, corrosion resistance, and dip coating. In the presence of curing agents, epoxy resins become rigid and infusible. Eco-friendliness and mechanical functionality have emerged as vulcanization properties. Curing agents are used for surface modification, thermodynamic properties, functional approaches to therapeutic procedures, and recent advances in a variety of fields such as commercial and industrial levels. The curing agent has superior construction and mechanical properties when compared to the commercial one, which suggests that it has the potential for use as the architectural and industrial coatings. The thermal stability of cured products is good due to the presence of the imide group and the hydrogenated phenanthrene ring structure. Over the course of the projection period, it is anticipated that the global market for curing agents will continue to expand at a steady rate. The growth of the market is mainly driven by its expanding range in future applications such as adhesives, composites, construction, electrical, electronics, and wind energy. This review focused on the most recent advancements in curing techniques, emphasizing their thermal and mechanical properties. The review also presents a critical discussion of key aspects and bottleneck or research gap of the application of curing agents in the industrial areas.
5,200원
38.
2024.02 구독 인증기관 무료, 개인회원 유료
This study reports the synthesis of a novel graphene/chitosan/β-cyclodextrin composite material (GO/CS/β-CD) via a onestep chemical reduction method, which combines the advantages of graphene, chitosan, and β-cyclodextrin. The morphology and structure of the composite were characterized using various techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. Subsequently, sortase A (SA) was immobilized onto the GO/CS/β-CD for the detection of Staphylococcus aureus. The sensor exhibited a good linear relationship within the concentration range of 30–300 CFU/mL, with a detection limit of 12 CFU/mL. The GO/CS/β-CD composite material showed enhanced properties due to the synergistic effect of graphene, chitosan, and β-cyclodextrin. The immobilization of sortase A onto the composite material improved the sensitivity and selectivity of the sensor for the detection of S. aureus. This study presents a novel graphene/chitosan/β-cyclodextrin composite material with immobilized sortase A, demonstrating enhanced sensitivity and selectivity for the detection of Staphylococcus aureus, which has potential for the development of high-performance sensors in various fields.
4,000원
39.
2024.02 구독 인증기관 무료, 개인회원 유료
A semi-natural composite of κ-carrageenan and bentonite, two natural biopolymers, was synthesized through free radical polymerization. This synthesis aimed to obtain a biodegradable, biocompatible, and swellable composite that is environmentally friendly. The components used in this synthesis are readily available, making it economically feasible and promising for potential biomedical applications. The composite is pH-responsive and intended for oral delivery of metformin hydrochloride and aminophylline, which have low bioavailability and undesirable side effects, respectively. The organic composite exhibits the advantage of reducing drug release in the acidic gastric medium. This composite is a stimuli-responsive polymeric material that has garnered significant attention in recent years for its application in oral drug delivery systems. These materials enable site-specific and controlled drug release while minimizing toxicity. The carrageenan-g-poly(acrylamide-co-acrylic acid)/bentonite composite was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM), which confirmed the successful synthesis of the composite. The swelling behaviour and point of zero charge of the composite were studied at different pH values, which showed a strong influence on the swelling properties of the composite. The drug loading capacity of the composite was measured at pH 5.3, and it was 70.60 mg/g for metformin and 95.66 mg/g for aminophylline at pH(3). The in vitro release profile of both drugs from the composite was also affected by the ionic strength, and it exhibited a lower release rate with higher salt concentration. The maximum release percentage of the drugs from carrageenan-g-poly(acrylic acid-acrylamide)/bentonite in simulated gastric, intestinal, and colon fluids was achieved within 40 h. The maximum release was 80% for metformin in simulated intestinal fluid (SIF) and 75% for aminophylline after 40 h.
4,500원
40.
2024.02 구독 인증기관 무료, 개인회원 유료
This paper presents an electrochemical immunosensor using a graphene/multi-walled carbon nanotube (MWCNT) composite platform for detecting the cardiovascular marker C-reactive protein (CRP). The immunosensor exhibited a linear detection range of 0.20–100 ng/mL CRP with a low limit of detection reaching 0.081 ng/mL. The composite material provided a 3D porous structure that allowed efficient antibody immobilization and minimized steric hindrance. The sensor showed high specificity, with minimal response to interfering substances. Using differential pulse voltammetry, the immunosensor demonstrated exceptional precision, rapid detection, and a direct correlation between CRP concentration and sensor response current. Overall, this work highlights the potential of the graphene/MWCNT composite platform as a robust tool for early CRP detection and cardiovascular disease risk assessment. The immunosensor provides sensitive and selective CRP quantification that could enable timely clinical intervention for at-risk individuals.
4,000원
1 2 3