간행물

Carbon Letters KCI 등재 Carbon letters

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.35 No.6 (2025년 12월) 23

1.
2025.12 구독 인증기관 무료, 개인회원 유료
This paper reviews MAX phases (bulk) and their 2D derivative, MXenes, focusing on synthesis methods, properties, and applications. Traditional and advanced synthesis techniques, including solid-state synthesis and spark plasma sintering, are examined, emphasizing structural diversity. Key characteristics, such as thermal stability, electrical conductivity, and mechanical resilience, are explored alongside their mechanisms. The review also highlights advancements in energy harvesting applications, such as H 2 production, solar cells, energy storage, catalysis, spintronics, electronic devices, and environmental remediation. Additionally, future research directions are outlined to address existing gaps and enhance their role in next-generation technologies and environmental remediation.
15,900원
2.
2025.12 구독 인증기관 무료, 개인회원 유료
Carbon nanotubes (CNTs) have been widely applied in diverse fields due to their exceptional mechanical, electrical, and thermal properties. However, the growing demand for precise control over their structure, crystallinity, and yield is severely hindered by the intricate, multi-factor-influenced CNTs growth process—this has become a critical bottleneck limiting their further application. A key breakthrough in addressing this challenge is the discovery that CNTs growth follows the "synergistic action of matter-driven and energy-driven" mechanisms. Mastering these dual driving mechanisms, establishing the direct link between reaction conditions and product structures, and thereby optimizing reaction paths, emerges as an effective strategy to achieve precise regulation of CNTs nucleation and growth. Against the backdrop of industrialization, this review not only provides a critical theoretical basis for breaking through the bottleneck of precise growth control but also directly propels high-quality CNTs toward broader and more practical application prospects.
8,700원
3.
2025.12 구독 인증기관 무료, 개인회원 유료
Fluorinated carbons ( CFX) are promising cathode materials for lithium primary batteries due to their high energy density, yet suffer from poor electronic conductivity. Manganese dioxide ( MnO2), on the other hand, offers superior rate capability, but limited capacity. Here, we design MnO2/ CFx hybrid cathodes by combining MnO2 with CFX materials synthesized at controlled fluorination levels (x = 0.4–1.0) to synergistically optimize both energy and power performance. Structural and spectroscopic analyses reveal that moderate fluorination (x = 0.6) induces a favorable balance of semi-ionic C–F and interfacial O–F bonds, enhancing electron delocalization and charge transfer at the MnO2/ CFX interface. In contrast, excessive fluorination (x ≥ 0.8) leads to the formation of electrochemically inert C–F2 and C–F3 species, suppressing redox kinetics. As a result, MnO2/ CFX-0.6 delivers a discharge capacity of 390 mAh g–1−1 at 0.05 C and retains 182 mAh g–1−1 at 4 C, outperforming both pristine MnO2 and other CFX variants. This work establishes interfacial fluorine bonding configuration, not just bulk F/C ratio, as a critical design parameter for high-performance hybrid cathodes.
4,000원
4.
2025.12 구독 인증기관 무료, 개인회원 유료
Water contamination caused by heavy metal pollutants from industrial activities remains a pressing environmental concern. This study reports the development of a novel carbon paste electrode (CPE) modified with ethylenediaminetetraacetic acid (EDTA), polyvinyl alcohol (PVA), and multi-walled carbon nanotubes (MWCNTs) using a mechanochemical method for the electrochemical detection of Cu(II) ions. The modified electrode was thoroughly characterized to evaluate its functional groups, morphology, crystallinity, elemental composition, and electrochemical properties. Electrochemical measurements were performed using cyclic voltammetry (CV) and square-wave anodic stripping voltammetry (SWASV) under optimized conditions in 0.1 M NH₄Cl at pH 5. The EDTA/PVA/MWCNT-CPE exhibited a low detection limit (0.0457 μM), a wide linear range (0.1–2.7 μM), and excellent reproducibility (RSD = 0.51%), repeatability (RSD = 0.43%), and stability (95% retention after six days). Selectivity tests demonstrated high recovery for Cu(II) (99.7%) and Hg(II) (99.89%) with minimal interference. This simple, cost-effective sensor offers high sensitivity and selectivity, making it a promising candidate for Cu(II) detection in environmental monitoring applications.
4,900원
5.
2025.12 구독 인증기관 무료, 개인회원 유료
In this study, we investigated the effect of excess sodium (Na) in a NaMnO2 structure using one-step heat treatment at 900 °C followed by quenching in liquid nitrogen (N₂). According to the X-ray diffraction (XRD) analysis, there was a competition between the monoclinic and orthorhombic phases, and we found that there were two monoclinic phases with similar structural properties. Therefore, we focused on revealing the formation of two isostructures of the monoclinic phase triggered by Na ions. We found that the lattice parameters and β angle changed from 113° to 105° in the samples with increasing Na content. Structural analysis of the powders using the XRD data was conducted using Rietveld refinement, and the phase ratios for all samples were calculated. The sample with x = 1.3 showed a 95% α-phase. To understand the formation of the two isostructures, we performed Density functional theory (DFT) calculations to examine their band structure, stability, and formation energy. A structural analysis of the excess Na-doped samples was performed using common techniques, and it was found that excess Na caused the formation of a coating on the grains in the form of sodium oxide. To validate this prediction, we conducted inductively coupled plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy coupled with energy dispersive X-ray (SEM–EDX) analyses using the basic properties of these techniques and their interactions with materials. In the second part of the study, we produced HC from locally sourced olive leaves and investigated their structural properties. The electrochemical properties of the electrode materials were examined using a half-cell configuration as electrodes with Na metal and a full-cell configuration using x = 1.3 cathode and HC anode. A direct-contact pre-sodiation strategy was used as the anode in the full-cell measurements. It was found that the full cells had initial capacity values of 150 mAh/g for the voltage range 1.5–4.3 V and 120 mAh/g for the voltage range 1.5–3.5 V.
5,200원
6.
2025.12 구독 인증기관 무료, 개인회원 유료
The mixed-ion electron conductor, Ag₂Se, has shown strong potential as a thermoelectric material operating near room temperature. In this study, we demonstrate that the incorporation of polyaniline (PANI) into Ag₂Se forms Ag₂Se/PANI nanocomposites with significantly enhanced thermoelectric performances. Ag₂Se was synthesized using a hydrothermal method followed by hot pressing to obtain dense composite pellets. The novelty of this work lies in the systematic tuning of the PANI content and its dual role in enhancing electrical transport while suppressing lattice thermal conductivity. Microstructural analysis reveals that PANI-induced defects, such as dislocations and point defects, effectively scatter phonons at multiple scales, resulting in a remarkably low lattice thermal conductivity (κₗ ≈ 0.08 Wm⁻1 K⁻1) at 393 K. Simultaneously, PANI improves carrier mobility by modifying the Coulomb potential at grain boundaries, reducing interfacial energy barriers. These effects lead to an improved power factor of 2028 μWm⁻1 K⁻2 and a peak figure of merit (zT ≈ 0.67) at 393 K for the 0.5 wt% PANI sample. This study introduces a novel polymer-assisted interface engineering approach to improve the thermoelectric performance of Ag₂Se-based materials.
4,600원
7.
2025.12 구독 인증기관 무료, 개인회원 유료
Based on a carbon emission inventory of China’s cement industry, this study evaluates the performance of six machine learning models—ridge regression (RR), polynomial regression (PR), random forest (RF), support vector machine (SVR), gradient boosted regression tree (GBRT), and feed-forward neural network (FNN)—in predicting carbon emissions. Model accuracy, feature importance, and residual distributions were analyzed. Results show that clinker production and coal consumption are the dominant factors, contributing 83.7% and 11.95% to emissions, respectively. PR and FNN achieved the best performance with R2 values up to 0.99 and lowest mean square errors (0.11 and 1.82). Their mechanisms were further adapted to improve the generalization of other models. Spatial analysis revealed that North, South, and Southwest China are major emission regions. Using the optimal model, emissions in 2035 are projected to reach 519.14 million tonnes. This study offers technical insights for model optimization and supports low-carbon policymaking in the cement industry.
6,100원
8.
2025.12 구독 인증기관 무료, 개인회원 유료
Double-layer supercapacitors ( SCs) based on carbon quantum dots (CQDs) are a novel and highly potential electrical energy storage technology. They have a high-power density (Pd) and a long span life, which are desirable for electric automobiles, however, their specific capacitance (Csp) needs to be improved. Here, we introduce an affordable and environmentally sustainable method to enhance the capacitance of Boron-Sulphur doped carbon quantum dots (B,S-CQDs) from Oloptum miliaceum (Grass) via the hydrothermal method. The findings show that heteroatom-doping might greatly enhance the Csp and energy density (Ed) when compared to undoped CQDs. As a consequence, the B,S-CQDs demonstrate a high Csp of 390 F g− 1 at 0.1 A g− 1 and 152 F g− 1 at 1.0 A g− 1, revealing excellent rate performance. Along with the electrode demonstrates superb coulombic efficiency with only 2% efficiency loss after 3000 cycles. Furthermore, the B,S-CQDs with a wide voltage range of 0.8 V yields a remarkable Ed of 48.0 Wh kg− 1 and Pd of 524 W kg− 1. These promising findings demonstrate an economical and environmentally friendly electrode material for high-performance SCs. This study offers ideas for the design and preparation of SCs electrode materials and represents a major endeavour to turn waste biomass (smilograss) into a useful electrode material.
4,600원
9.
2025.12 구독 인증기관 무료, 개인회원 유료
Improving the oxygen evolution reaction (OER) performance or replacing OER with the value-added conversion of biomass is of great significance for the green hydrogen energy production. In this work, bimetallic species-decorated laser-induced graphene (LIG) was fabricated and demonstrated as the self-supported electrodes towards efficient OER and 5-hydroxymethylfurfural oxidation reaction (HMFOR). Three-dimensional LIG was obtained via one-step irradiation process under ambient conditions, and active metal species were then introduced through electrodeposition, with Ni-based catalyst as the primary catalytic material and Fe and Co as modified metals. Among, LIG-NiFe electrode achieved an extremely low overpotential of 241.7 mV at a current density of 20 mA/cm2 for OER and demonstrated long-term stability. This could be attributed to the promoted formation of Ni3+ active centers by Fe modified and the intrinsic porous structure of LIG providing an enhanced surface area. As for LIG-NiCo, due to the low onset potential of Co for HMF, it could achieve 99.6% HMF conversion and yielded value-added 2, 5-furandicarboxylic acid (FDCA) with a selectivity of 87.1%. Coupled with the merit of facile fabrication of LIG framework, this study demonstrates that LIG-based electrodes assume great practical application value in electrocatalytic reactions.
4,600원
10.
2025.12 구독 인증기관 무료, 개인회원 유료
In this study, C.I. Pigment Blue 15:3, an organic phthalocyanine based pigment, was used as a precursor to synthesize activated carbon/copper/copper oxide composite through a carbonization and activation process. The resulting composite was investigated to evaluate the potential use as a hybrid capacitor electrode of supercapacitor and pseudo-capacitor. Precursor was pre-treated at 600 °C, followed by activation at 750 °C using alkaline activating agents (KOH and K2CO3). Neutral ZnCl2 activating agent was also used for activation at 700 °C without pre-treatment to compare the electrochemical performance. The KOH activated sample exhibited the presence of Cu, CuO, and Cu2O in XRD and XPS analysis results and it also showed a highest specific surface area of 2731 m2/ g and well-developed 0.7–2.0 nm micropores, enhancing ion adsorption in K2SO4 electrolyte. Electrochemical tests revealed that PB_KOH exhibited the highest capacitance, outperforming commercial Norit Carbon at various current densities, due to its Cu/CuO/Cu2O/activated carbon composite structure. These findings highlight its strong potential as a high-performance supercapacitor electrode material.
4,300원
11.
2025.12 구독 인증기관 무료, 개인회원 유료
With the increasing demand for flexible electronic devices, smaller and lighter flexible supercapacitors have gained significant research attention. Among the various materials, self-supporting reduced graphene oxide (rGO) paper has emerged as one of the most promising electrode materials for supercapacitors due to its low cost, high chemical/thermal stability, and excellent electrical conductivity. Nevertheless, a major drawback of rGO paper is the limited ion diffusion between stacked rGO layers, hindering the effective formation of electrochemical double-layer at the electrode/electrolyte interface. In this study, we prepared the rGO paper derived from ball-milled followed-by water oxidation process for reducing the sheet size. The smaller-sized rGO sheets facilitated ion transport between graphene layers, promoting efficient electric double-layer formation. Moreover, the increased presence of edge planes in ball-milled rGO sheets achieved high capacitance, further enhancing the performance of rGO as an electrode material. Notably, the 2-BMOX rGO paper obtained from ball-milling and wet-oxidized graphite exhibited a capacitance of 117.9 F/g in cyclic voltammetry (CV) and 128.6 F/g in galvanostatic charge–discharge (GCD) tests, approximately twice that of conventional rGO. Additionally, the capacitance retained 91% of its initial performance after 2,000 cycles, indicating excellent cycling stability.
4,300원
12.
2025.12 구독 인증기관 무료, 개인회원 유료
This research highlights the use of a WO3: CeO2@MXene/gC3N4 (MGWC) nanodisk as a versatile material. MGWC demonstrates efficient photocatalytic degradation of moxifloxacin (MOF) in water under sunlight and also shows great promise for high-performance supercapacitor applications. MGWC was synthesized using a modified hydrothermal method and thoroughly characterized using various techniques. The MGWC showed a band gap energy of 2.79 eV determined through UV–Vis DRS analysis and an average crystallite size of 39.6 nm calculated from XRD. A promising photocatalytic activity was observed for the degradation of MOF, outperforming other photocatalysts. Additionally, preliminary studies examined variations in catalyst concentration, pH, kinetics, electrolytes, scavengers, reusability, and TOC, contributing valuable insights. Under optimal conditions, the MOF achieved almost complete degradation, reaching about 99.7% within 180 min using the MGWC photocatalyst. Additionally, MGWC exhibits promising potential in supercapacitor applications. EIS and CV studies have been used to examine MGWC’s exceptional charge transfer properties. CV tests confirm the pseudocapacitive nature of MGWC electrodes. GCD studies of MGWC exhibit a high specific capacitance of 551 F/g at 1 A/g with incomparable capacitance retention of 98.1% over 10,000 cycles. This research not only aids in reducing emerging environmental pollutants but also sets the stage for sustainable energy solutions.
6,100원
13.
2025.12 구독 인증기관 무료, 개인회원 유료
The ZnCl2 chemical activation method is widely employed for the preparation of biomass-derived porous carbons. In most of the related studies, the emphasis lies on investigating how experimental preparation conditions impact the performance of the final products. However, the performance of the porous carbon also depends on the chemical structure of the carbon source. In this study, we used alkali lignin, ammoxidized lignin and sodium lignosulfonate as carbon sources to prepare porous carbon through ZnCl2 activation. The influence of the chemical structures of lignin on the activation process is explored. The porous carbons prepared from alkali lignin (ALC) and ammoxidized lignin (AOLC) both exhibit similar and relatively high specific surface areas (ALC: 1164 m2 g− 1, AOLC: 1156 m2 g− 1) and capacitance contribution ratios (ALC: 80.6%, AOLC: 79.4%). The porous carbon prepared from sodium lignosulfonate has a specific surface area of 890 m2 g− 1 and a mesopore ratio of 26.1%, with the capacitance contribution accounting for only 75.1%. ZnS and NaCl generated during the activation process involving sodium lignosulfonate can partially enable mesopores by template effect, which in turn results in lower electrochemical properties. This study explores the reasons for the differences in ZnCl2 activation on different lignins, providing data to support research on the mechanism of how lignin structure influences ZnCl2 activation.
4,000원
14.
2025.12 구독 인증기관 무료, 개인회원 유료
Thermal property represents a critical metric when evaluating the performance of next generation nuclear graphite. Despite the extensive measurement data available, a detailed investigation into the influence of microstructure on graphite’s thermal conductivity remains underexplored. In this work, taking advantage of the distinct microstructures between different graphite grades, a comparative study of four graphite grades was conducted to elucidate the structure–property relationship. The microstructures of graphite were characterized by Raman spectroscopy and X-ray diffraction techniques, demonstrating specimen preparation induced damage and annealing induced restoration. Thermal properties were investigated across multiple scales using laser flash analysis and photothermal radiometry. The results indicate that despite similar densities, thermal conductivity varies significantly between different grades and correlates positively with crystallite sizes. By interpolating an infinitely large crystallite and removing the impact of macroscale porosity, an upper bound for the thermal conductivity of isotropic defect-free nuclear graphite has been established.
4,900원
15.
2025.12 구독 인증기관 무료, 개인회원 유료
Due to the severity of environmental degradation and depletion of natural energy resources, research on sustainable energy storage systems have become quite popular. Supercapacitor is one of the most innovative and promising type of energy storage devices. The effective performance of supercapacitor greatly depends on the electrode material. Therefore, new type of nanocomposite has been fabricated with βCD-stabilized CuO nanoparticles (CuO-βCD NPs) on Co-Al layered double hydroxide (Co-Al LDH) utilizing solvothermal process. The wet impregnation technique facilitates the formation of three distinct CuO-βCD/Co-Al LDH nanocomposites in the ratios of 1:1, 1:2, and 2:1 by promoting the growth of CuO-βCD on Co-Al LDH in corresponding compositions. Synthesized nanocomposites are characterized using a variety of spectroscopic techniques. The average pore size of 2:1 CuO-βCD/Co-Al LDH is 1.7 nm whereas the specific surface area and approximate pore volume of this nanocomposite are 38.306 m2 g− 1 and 0.043 cm3 g− 1, respectively. Electrochemical investigations like cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopic (EIS) measurements and along with cycle stability studies are performed to examine the electrochemical performance of synthesized nanocomposites. The 2:1 ratio has revealed improved specific capacitance (SC) of 1567 F g− 1 at 0.45 A g− 1 in 1 M potassium hydroxide medium in three electrode systems and maintains 76% of its original SC even after 5000 cycles. The improved electrochemical performance of 2:1 ratio reveals the appropriateness of this material as an effective electrode for supercapacitor application.
5,100원
16.
2025.12 구독 인증기관 무료, 개인회원 유료
With high redox activity, superior conductivity, abundant pores, and large specific surface area, nitrogen-doped graphitic carbon featuring a hierarchically porous structure is regarded as ideal electrode material for supercapacitors. In this work, hierarchically porous nitrogen-doped graphitic carbon (PG-PZC50) was fabricated via non-solvent induced phase separation and high-temperature calcination processes. SEM images showed its three-dimensional network structure, with abundant macro- and mesopores distributed throughout. XRD and Raman spectra confirmed the phase purity and graphitic nature of the as-prepared material, while XPS revealed its surface elemental composition, especially the content and doping states of nitrogen atoms. The graphene oxide-induced three-dimensional network, combined with the mesoporous structure of metalorganic framework-derived N-doped carbon particles, creates abundant migration channels and a large adsorption surface area for the electrolyte ions. Benefiting from its hierarchically porous structure and high nitrogen-doping content, the formed PG-PZC50 reached high specific capacitances of 499.7 F g− 1 at 0.1 A g− 1 and 179.6 F g− 1 at 20 A g− 1. Notably, the material also demonstrated robust cyclic stability with no capacitance loss after 10,000 charge–discharge cycles. The proposed synthetic strategy provides new ideas for the facile and reproducible construction of nitrogen-doped graphitic carbon with 3D hierarchically porous structure and high capacitive performances.
4,200원
17.
2025.12 구독 인증기관 무료, 개인회원 유료
Graphene materials show great potential in the field of supercapacitors, but their tendency to agglomerate leads to a significant decrease in performance. Herein, manganese dioxide intercalated graphene oxide precursor was prepared using the modified Hummer method. During pyrolysis, manganese dioxide can not only act as a separator to prevent graphene aggregation but also undergo redox reactions with graphene to obtain oxygen-rich mesopore graphene (OMG). Benefiting from the mesoporous structure and abundant oxygen-containing functional groups, the OMG-600 electrode shows a specific capacitance of 248.67 F g− 1 at 0.5 A g− 1 and good electrochemical stability (92.25% capacitance retention after 10,000 cycles). Moreover, the assembled OMG-600//OMG-600 symmetric supercapacitor delivers an energy density of 17.69 Wh kg− 1 and superior electrochemical stabilization in 1 M Na2SO4 electrolyte.
4,000원
18.
2025.12 구독 인증기관 무료, 개인회원 유료
The loss of soil available nutrients may affect soil quality and crop growth. Biochar can form a multi-level fixed network because of its rich pore structure and surface functional groups, which can effectively fix available nutrients in soil and maintain nutrient utilization rate. Because it is difficult to directly prepare biochar materials with good adsorption characteristics through experimental results. This study employed an XGBoost machine learning prediction model to determine the optimal nutrient-rich biochar preparation conditions. The R2 value ranged from 0.97 to 0.99. The results indicated that specific surface area was the primary factor influencing ammonium nitrogen adsorption, with a feature importance of 56.13%. Production conditions (hydrothermal temperature and time) significantly affected the adsorption of nitrate nitrogen and available phosphorus, with feature importances of 75.91% and 81.54%, respectively. Mean pore diameter was negatively correlated with potassium ion adsorption characteristics. Biochar prepared under hydrothermal conditions at 202.50–251.25 °C for 3 h exhibited favorable adsorption characteristics for multiple soil available nutrients. This study provides new insights into biochar’s application in the field of soil nutrient adsorption through data analysis. It is helpful to avoid the waste in the process of energy utilization from biomass to biochar.
5,200원
19.
2025.12 구독 인증기관 무료, 개인회원 유료
Recent advancements in 2D graphene materials highlight their versatile applications in electronics, clean energy, medicine, and other fields due to their exceptional properties and ease of fabrication. The current study investigates the preparation of reduced graphene oxide (RGO) through the thermal exfoliation of graphite oxide under an air atmosphere at varying temperatures (200–500 °C) and further examines its suitability as an anode for lithium-ion (Li-ion) batteries. The extent of reduction of functional groups, exfoliation, and other physical changes is analyzed by XRD, SEM, XPS, BET, and Raman studies, which show that the reduction of functional groups and surface area increases with increasing exfoliation temperature. The RGO electrodes are subjected to electrochemical studies, including cyclic voltammetry and charge–discharge cycling at various current densities, which demonstrate varying discharge capacities for RGO samples prepared at different temperatures. The RGO exfoliated at 400 °C delivered the maximum capacity, indicating that this temperature is optimal for the thermal preparation of RGO. This material shows potential for use as an anode in Li-ion batteries.
4,900원
20.
2025.12 구독 인증기관 무료, 개인회원 유료
The integration of high-capacity active materials onto flexible substrates is essential for advancing flexible sodium-ion batteries (SIBs). Herein, we report a novel strategy for fabricating high-performance, flexible SIB anodes via the immobilization of molybdenum disulfide ( MoS2) nanoparticles on carbon cloth (CC) modified with metal–organic framework-derived carbon nanotubes (MOF-derived CNTs). In this method, Co-containing zeolitic imidazolate frameworks (ZIFs) were assembled on polyaniline-coated CC, followed by CNT growth via chemical vapor deposition (CVD) and hydrothermal deposition of MoS2. The resulting MoS2@ CNT@CC electrodes achieved significantly higher MoS2 loading (15–20 wt%) compared to direct deposition on CC (< 5 wt%). Electrochemical evaluation revealed an initial discharge capacity of 231 mAh g− 1 with a Coulombic efficiency of 94.3%, outperforming MoS2@ CC (150 mAh g− 1, 77.8%) and bare CC (113 mAh g− 1, 74.3%). After 100 cycles at 50 mA g− 1, MoS2@ CNT@CC maintained a stable capacity of 133 mAh g− 1 and an average Coulombic efficiency of 99.9%. Cyclic voltammetry confirmed enhanced redox activity, while mechanical tests showed no significant degradation after 10,000 bending cycles (10 mm radius). These findings highlight the effectiveness of MOF-derived CNTs in enhancing MoS2 loading, conductivity, and mechanical resilience, offering a promising route toward robust and efficient flexible SIB anodes.
4,500원
1 2